

DESIGN FLOOD HYDROGRAPH ESTIMATION FOR RURAL CATCHMENTS IN MALAYSIA

(REVISED AND UPDATED 2018)

DEPARTMENT OF IRRIGATION AND DRAINAGE MALAYSIA

DISCLAIMER

The department or government shall have no liability or responsibility to the user or any other person or entity with respect to any liability, loss or damage caused by or alleged to be caused, directly or indirectly, by the adaptation and use of the methods and recommendations of this publication, including but not limited to, any interruption of service, loss of business or anticipatory profits or consequential damages resulting from the use of this publication.

Opinions expressed in Department of Irrigation and Drainage (DID) publications are those of the authors and do not necessarily reflect those of DID.

Copyright ©2018 by Department of Irrigation and Drainage (DID) Malaysia Kuala Lumpur, Malaysia.

Perpustakaan Negara Malaysia DESIGN FLOOD HYDROGRAPH ESTIMATION FOR RURAL CATCHMENTS IN MALAYSIA (REVISED AND UPDATED 2018) ISBN 978-983-9304-44-2

- 1. Hydrology--Data processing.
- 2. Hydrogeology--Malaysia.
- 3. Watershed management--Malaysia.
- 4. Malaysia--Politics and government.
- I. Department of Irrigation and Drainage Malaysia.

551.4809595

All rights reserved. Text and figures in this publication is the copyright of the Department of Irrigation and Drainage Malaysia unless otherwise stated and may not be reproduced without permission.

PREFACE

The design of many hydraulic structures requires a reliable and realistic estimate of the design flood hydrograph. When no streamflow records are available, as is often the case, the design flood hydrograph may be derived from a design storm.

The Hydrological Procedure No. 11: Design Flood Hydrograph Estimation for Rural Catchments in Malaysia was previously published in 1976 (HP 11, 1976). The data used were limited to up to 1973 data and it was only developed for Peninsular Malaysia and not applicable for Sabah and Sarawak. The revised and updated HP 11 (HP 11, 2018) has been developed based on data up to 2017, incorporating new rainfall and streamflow stations that have been added and the record lengths that have increased in the Peninsular Malaysia and the use of local data collected by DID Sabah and DID Sarawak. HP 11 (2018) is expected to yield better accuracy of flood estimate as more detailed data and advanced analysis method were used for its development and can be used for Peninsular Malaysia, Sabah and Sarawak.

This Procedure presents a deterministic method of estimating the design flood hydrograph for ungauged rural catchments in Malaysia. The Procedure is based on the development of three components: a design storm, a rainfall-runoff relationship and a synthetic Snyder unit hydrograph (UH). Estimation of flood peaks using the Procedure and results obtained from flood frequency analysis show that the Procedure yielded satisfactory results. The limitations of the Procedure are discussed and a number of worked examples illustrating the use of the Procedure are given.

G&P Water and Maritime Sdn Bhd (GPWM) was commissioned by the Water Resources Management and Hydrology Division of DID Malaysia to produce HP 11 (2018) through a Study named *"Revise and Update Hydrological Procedure No. 11: Design Flood Hydrograph Estimation for Rural Catchments in Malaysia bagi Program Memperkasa Data dan Rangkaian Stesen Hidrologi Nasional (RHN) Fasa 1"*, contract no. JPS/IP/C/H/22/2017.

ii

ACKNOWLEDGEMENT

The Revised and Updated Hydrological Procedure No. 11 (HP 11) has been prepared through the co-operative and collaborative efforts between Water Resources Management and Hydrology Division, Department of Irrigation and Drainage (DID), Malaysia and G&P Water and Maritime Sdn Bhd (GPWM). The efforts of those involved in preparing this Hydrological Procedure are gratefully acknowledged.

Special thanks go to the Director of Water Resources Management and Hydrology Division, Department of Irrigation and Drainage (DID) Malaysia YBhg. Dato' Ir. Nor Hisham bin Mohd. Ghazali.

This Procedure could not have been completed without the guidance and assistance of key staff members from DID's Water Resources Management and Hydrology Division recognized herein:

Ir. Roslina binti Yusop, Hazalizah binti Hj. Hamzah, Adilah binti Mohamad Anuar, Nor Hamizah binti Muhamad, Sazali bin Osman and all the engineers and staff members who have contributed directly and indirectly.

The contributions of Technical Committee members are also acknowledged herein: Rosly bin Aman, Ezaire bin Md. Eusofe, Ir. Normahyusni binti Mohd Annuar, Tay Siew Voon and Mohd Rizal bin Abd. Ghani.

The Water Resources Management and Hydrology Division of the Department of Irrigation and Drainage (DID), Ministry of Water, Land and Natural Resources Malaysia would like to express sincere appreciation to GPWM especially Ir. Hong Kee Ann, Ir. Chong Sun Fatt, Ir. Low Koon Sing, Ir. Lim Sin Poh, Ir. Yong Siew Fang, Suzana binti Shafie, Irena binti Naubi and team members for successfully preparing and publishing this Hydrological Procedure No. 11 (2018).

Table of Contents

DI	SCLAIN	IER		i
PF	DISCLAIMER. i PREFACE. iii VREFACE. iii 'ACKNOWLEDGEMENT. iii 'ABLE OF CONTENTS. iv JST OF TABLES. v JST OF FIGURES. v JST OF ABBREVIATIONS. vi JST OF SYMBOLS. vii L. Introduction 1 2. Purpose of the Procedure 2 3.1 General 2 3.2 The Design Storm 3 3.2.1 Return Period 3 3.2.2 Point Rainfall Depth and Frequency 4 3.2.3 Areal Reduction Factor 4 3.2.4 Rainfall Temporal Distribution 5 3.2.5 Critical Rainfall Duration 7 3.3 Rainfall-Runoff Relationship 9 3.3.1 Peninsular Malaysia 9 3.3.2 Sabah 10			
AC	KNOW	LEDGEN	ИЕNT	iii
TA	BLE OF	CONTE	NTS	iv
LIS	ST OF T	ABLES		V
LIS	ST OF FI	GURES.		v
LIS	ST OF A	BBREVI	ATIONS	vi
LIS	ST OF S	YMBOLS	S	vii
1.	Introc	luction		1
2.	Purpo	se of th	he Procedure	2
3.	Devel	opmen	t of the Procedure	2
	3.1	Gener	al	2
	3.2	The De	esign Storm	3
		3.2.1	Return Period	3
		3.2.2	Point Rainfall Depth and Frequency	4
		3.2.3	Areal Reduction Factor	4
		3.2.4	Rainfall Temporal Distribution	5
		3.2.5	Critical Rainfall Duration	7
	3.3	Rainfa	III-Runoff Relationship	9
		3.3.1	Peninsular Malaysia	9
		3.3.2	Sabah	10
		3.3.3	Sarawak	11
3.4 The Time Distribution of Runoff		The Ti	me Distribution of Runoff	12
		3.4.1	General	12
		3.4.2	Snyder Unit Hydrograph	13
		3.4.3	Snyder UH Peaking Coefficient	14
		3.4.4	Snyder UH Parameter Determination	16
	3.5	Avera	ge Lag Time for Gauged Catchments	22
	3.6	Lag Tir	me Equation Development	23
	3.7	Peakir	ng Coefficients	26
	3.8	Desigr	ា Baseflow	27
	3.9	Deriva	ation of the Design Flood Hydrograph using Computer Program	29

4. Application of the Procedure		30			
	4.1	Application of the Procedure using Manual Calculation	30		
	4.2	Application of the Procedure using Computer Program	32		
	4.3	Worked Examples	33		
5.	Limita	tions of the Procedure	55		
6. List of References		57			
Appendix A: Data Used to Derive Rainfall-Runoff Relationship 60					
Appendix B: Comparison between Simulated and Observed Hydrographs		74			
Appendix C: Average Catchment Lag Times and Peaking Coefficients		79			
Ap	Appendix D: Computer Program for Unit Hydrograph Computation				

List of Figures

Figure 1: Rainfall Temporal Distribution Regions for Peninsular Malaysia	6
Figure 2: Rainfall Temporal Distribution Regions for Sabah and Sarawak	8
Figure 3: Rainfall-Runoff Relationship for Peninsular Malaysia Catchments	10
Figure 4: Rainfall-Runoff Relationship for Sabah Catchments	11
Figure 5: Rainfall-Runoff Relationship for Sarawak Catchments	12
Figure 6: Alternative Definition of Catchment Lag (Ponce)	14
Figure 7: Baseflow and Catchment Area Relationship for Peninsular Malaysia	27
Figure 8: Baseflow and Catchment Area Relationship for Sabah	28
Figure 9: Baseflow and Catchment Area Relationship for Sarawak	29

List of Tables

Table 1: ARF for Peninsular Malaysia, Sabah and Sarawak	5
Table 2: Ranges and Regional Average Values of C_{p}	15
Table 3: The Recommended Range of ${ m C}_{ m p}$ and Regional Average ${ m C}_{ m p}$ for Peninsular Malaysia, Saba	ah
and Sarawak	26

List of Abbreviations

ARF	Areal Reduction Factor
Bkt	Bukit (Hill)
BPSAH	Bahagian Pengurusan Sumber Air dan Hidrologi
Bt	Batu (Mile)
DID	Department of Irrigation and Drainage
IDF	Intensity-Duration-Frequency
Jam	Jambatan (Bridge)
Jln	Jalan (Road)
JPS	Jabatan Pengairan dan Saliran Malaysia (Department of Irrigation and Drainage)
К	Kuala (Confluence)
Kg	Kampung (Village)
PMP	Probable Maximum Precipitation
SCS	Soil Conservation Services
Sg	Sungai (River)
Tg	Tanjung (Headland)
Tmn	Taman (Park)
UH	Unit Hydrograph
USBR	United States Bureau of Reclamation
USGS	United States Geological Survey
USWB	United States Weather Bureau
HEC	Hydrologic Engineering Centre
НР	Hydrological Procedure
HMS	Hydrologic Modelling System

List of Symbols

А	Catchment area		
C _p	Peaking coefficient		
hi	Elevation of the main stream at point i		
h	Average values of h _i		
Н	Measured water level		
li	Length of the main stream from catchment outlet to point i		
Ī	Average values of I _i		
L	Main stream length		
L _c	Main stream length from catchment outlet to catchment centroid		
Lg	Lag time		
Р	Storm rainfall depth		
q _p	Peak discharge of standard UH		
q _{pR}	Peak discharge of required UH		
Q	Discharge or direct runoff		
Q _{ave}	Average observed discharge		
Q _B	Baseflow		
Q _B Q _c	Baseflow Computed discharge		
Q _B Q _c Q _o	Baseflow Computed discharge Observed discharge		
Q _B Q _c Q _o Q _p	Baseflow Computed discharge Observed discharge Peak discharge		
Q _B Q _c Q _o Q _p R	Baseflow Computed discharge Observed discharge Peak discharge Correlation coefficient		
Q _B Q _c Q _o Q _p R R ²	Baseflow Computed discharge Observed discharge Peak discharge Correlation coefficient Coefficient of determination		
Q _B Q _c Q _o Q _p R R ² S	Baseflow Computed discharge Observed discharge Peak discharge Correlation coefficient Coefficient of determination Weighted slope of main stream		
$\begin{array}{c} Q_B \\ Q_c \\ Q_o \\ Q_p \\ R \\ R^2 \\ S \\ t_b \end{array}$	Baseflow Computed discharge Observed discharge Peak discharge Correlation coefficient Coefficient of determination Weighted slope of main stream Time base		
$\begin{array}{c} Q_B \\ Q_c \\ Q_o \\ Q_p \\ R \\ R^2 \\ S \\ t_b \\ t_{pR} \end{array}$	Baseflow Computed discharge Observed discharge Peak discharge Correlation coefficient Coefficient of determination Weighted slope of main stream Time base		
$\begin{array}{c} Q_B \\ Q_c \\ Q_o \\ Q_p \\ R \\ R^2 \\ S \\ t_b \\ t_{pR} \\ t_r \end{array}$	Baseflow Computed discharge Observed discharge Peak discharge Correlation coefficient Coefficient of determination Weighted slope of main stream Time base Lag time of required UH Rainfall duration of standard UH		
$\begin{array}{c} Q_B \\ Q_c \\ Q_o \\ Q_p \\ R \\ R^2 \\ S \\ t_b \\ t_{pR} \\ t_r \\ t_R \end{array}$	Baseflow Computed discharge Observed discharge Peak discharge Correlation coefficient Coefficient of determination Weighted slope of main stream Time base Lag time of required UH Rainfall duration of standard UH		
$\begin{array}{c} Q_B \\ Q_c \\ Q_o \\ Q_p \\ R \\ R^2 \\ S \\ t_b \\ t_{pR} \\ t_r \\ t_R \\ T_c \end{array}$	Baseflow Computed discharge Observed discharge Peak discharge Correlation coefficient Coefficient of determination Weighted slope of main stream Time base Lag time of required UH Rainfall duration of standard UH		
$\begin{array}{c} Q_B \\ Q_c \\ Q_o \\ Q_p \\ R \\ R^2 \\ S \\ t_b \\ t_{pR} \\ t_r \\ t_R \\ T_c \\ T_p \end{array}$	Baseflow Computed discharge Observed discharge Peak discharge Correlation coefficient Coefficient of determination Weighted slope of main stream Time base Lag time of required UH Rainfall duration of standard UH Rainfall duration of required UH		
Q_B Q_c Q_o Q_p R R^2 S t_b t_{pR} t_r t_R T_c T_p U	BaseflowComputed dischargeObserved dischargePeak dischargeCorrelation coefficientCoefficient of determinationWeighted slope of main streamTime baseLag time of required UHRainfall duration of standard UHRainfall duration of required UHTime of concentrationTime to peakUnit depth of net rainfall		

1. Introduction

A problem commonly encountered in the engineering field is the determination of the design flood. The design flood may be defined as the discharge magnitude of a specified protection level adopted for the design of a flood control structure taking into consideration the hydrologic and economic factors.

Design flood estimation using established methodology is relatively simple when records of streamflow and rainfall are available for the catchment concerned. The difficulties arise when no such records are available in which case the designer is faced with two alternatives:

- To instrument the catchment for the period required to collect the hydrological data necessary to derive the design flood.
- (ii) To estimate the design flood using a flood estimation procedure.

The former approach is generally time consuming and expensive and is generally only warranted on projects involving major capital expenditure. The latter approach is undoubtedly subject to a greater degree of uncertainty, but nevertheless has to be used in the absence of the required hydrological data. Design flood estimates made using a flood estimation procedure should therefore be interpreted sensibly within the limitations of the method and where possible checked using an alternative flood estimation method available.

Four procedures for estimating the design flood of ungauged rural catchments have been adopted for use in Peninsular Malaysia – the Rational Method, Hydrological Procedure No. 5 (HP 5, 2010), the Regional Flood Frequency Method, Hydrological Procedure No. 4 (HP 4, 1987), Design Flood Hydrograph Estimation for Rural Catchments in Peninsular Malaysia, Hydrological Procedure No. 11 (HP 11, 1976) and Estimation of Design Flood Hydrograph using Clark Method for Catchments in Peninsular Malaysia, Hydrological Procedure No. 27 (HP 27, 2010). These procedures were developed from flood studies of Malaysian gauged catchments. The Rational Method and the Regional Flood Frequency Method provide a means of estimating the design flood peak only. Although this is often sufficient, the design of many engineering works requires a consideration of storage upstream of the structure e.g. dam spillways, culverts with upstream ponding etc. The complete design flood hydrograph at the point of interest is therefore necessary.

This Procedure is a revision of the HP 11 (1976) "Design Flood Hydrograph Estimation for Rural Catchments in Peninsular Malaysia" hereby termed as HP 11 (1976) and in addition, methods for design flood hydrograph for Sabah and Sarawak were also developed and presented. The Procedure is not applicable to urban catchments.

2. Purpose of the Procedure

The purpose of this Procedure is to estimate the peak flow, the volume and time distribution of runoff for various return periods. This Procedure is developed taking into consideration:

- (i) Significant differences in the catchment characteristics that affect flood.
- Utilize catchment data that can be readily determined from topographical maps.
- (iii) Be simple and relatively fast to apply.
- (iv) Utilize advances in hydrological methods and computer modelling.

3. Development of the Procedure

3.1 General

A review by Cordery and Pilgrim (1970) shows that three common steps used in estimating design flood hydrographs are:

- (i) The specification of design storm which includes the return period, the total rainfall volume, rainfall duration, the areal distribution and temporal distribution.
- (ii) The estimation of runoff volume resulting from the design rainstorm.
- (iii) The time distribution of runoff volume from the catchment.

Over the years, a number of techniques have been developed for estimating the components listed in the three steps above. However, the ability to develop a reliable design flood hydrograph estimation procedure depends on the availability and reliability of streamflow and rainfall data. After more than 40 years since the development of HP 11 (1976), more data especially streamflow data are available for Peninsular Malaysia. DID hydro-meteorological networks have been expanded considerably and resulting in an increase in the record lengths and number of stations in Peninsular Malaysia. The local data collected by DID Sabah and DID Sarawak are also now available. Data collection equipment has been improved thus increasing the data reliability.

3.2 The Design Storm

3.2.1 Return Period

In this Procedure, it is assumed that the return period of the design flood equals the return period of the design storm. This assumption has been adopted for most deterministic flood estimation procedures. The severity of damage caused in the event of design flood depends on the design return period adopted for a project. For large schemes, the design return period is usually based on a cost benefit analysis.

Heiler and Tan (1974) have recommended design return period for different types of water control structures in Malaysia. In cases where there is considerable risk of major damage and loss of lives in the event of design flood being exceeded, it is common practice to adopt the upper limit of the flood regime, such as a probable maximum flood (PMF) derived from probable maximum precipitation (PMP). The techniques for

estimating the PMP are beyond the scope of this Procedure but can be referred to the technical guideline by WMO and NAHRIM (NAHRIM, 2009).

3.2.2 Point Rainfall Depth and Frequency

A depth–duration–frequency study of storm rainfall for Malaysia has been compiled in Hydrological Procedure No. 1, HP 1 (2015) and Hydrological Procedure No. 26, HP 26 (2018). These hydrological procedures can be used to estimate the depth of rainfall of a specified return period and duration for any location in Malaysia. Estimation of point rainfall depth using these procedures is reliable. The user may also undertake to analyse rainfall data and derive the catchment Intensity-Duration-Frequency (IDF) using up-todate and all available data.

3.2.3 Areal Reduction Factor (ARF)

For a storm event, rainfall is usually not evenly distributed over an area with rainfall amount decreasing with distances from the storm centre. For Malaysia, large variations in rainfall amount can occur over short distances, particularly when convective thunderstorms dominate. Rainfall areal reduction factor (ARF) has been studied for Kuala Lumpur and Northern Kelantan (Water Resources Publication No. 17, WRP 17 (1986) and HP 1 (2015)). However, the areas studied are rather limited and not extensive (only up to 200 km²) and compared to the ARF used in the earlier hydrological procedure (HP 1, 1982), the values derived are low.

In HP 11 (1976), the 24-hour ARF for the data derived in Peninsular Malaysia were plotted with the US Weather Bureau (USWB) curves. The plotted points define a typical rainfall depth-area trend with considerable scatter in the points reflecting different storm rainfall characteristics and return period. The USWB curve for 24-hour duration rainfall forms an upper envelope containing most of the study data. It is considered that this curve represents the likely upper limit of the variation of the ARF with catchment area for 24hour rainfall typical of the more severe flood producing storms. The variation of the ARF with catchment area for 24-hour and short duration rainfall as recommended by USWB is shown in **Table 1.** For Sabah and Sarawak, the same ARF table for Peninsular Malaysia in HP 11 (1976) developed by USWB was used to convert point estimates to areal average estimates in HP 26 (1983). In this Procedure, the ARF for Peninsular Malaysia, Sabah and Sarawak can be obtained or interpolated from **Table 1**.

Catchment Area (km²)	Storm Duration (hrs)				
	0.5	1	3	6	24
0	1.00	1.00	1.00	1.00	1.00
50	0.82	0.88	0.94	0.96	0.97
100	0.73	0.82	0.91	0.94	0.96
150	0.67	0.78	0.89	0.92	0.95
200	0.63	0.75	0.87	0.90	0.93
250	0.61	0.73	0.85	0.89	0.93
300	0.59	0.71	0.84	0.88	0.93
400	0.58	0.68	0.81	0.86	0.92
500		0.67	0.80	0.85	0.92
600		0.66	0.79	0.84	0.91
800		0.65	0.78	0.83	0.91
1000			0.78	0.83	0.91

Table 1: ARF for Peninsular Malaysia, Sabah and Sarawak

Source: USWB (1957-58)

3.2.4 Rainfall Temporal Distribution

The temporal distribution of the design storm, that is, the distribution of rainfall depth over storm duration is usually adopted from a study of the temporal distribution of the recorded storms. Design rainfall temporal pattern is a critical factor in rainfall-runoff modelling. Design temporal pattern can affect the design flood significantly.

3.2.4.1 Rainfall Temporal Distribution for Peninsular Malaysia

A study was carried out by DID (HP 1, 2015) to obtain the temporal distribution of annual maximum rainstorms for selected durations of 0.25, 0.5, 1, 3, 6, 12, 24, 48 and 72 hours for Peninsular Malaysia. Temporal distributions for 5 regions were derived as shown in **Figure 1** and these are adopted in this Procedure.

Source: HP 1 (2015)

Figure 1: Rainfall Temporal Distribution Regions for Peninsular Malaysia

3.2.4.2 Rainfall Temporal Distribution for Sabah and Sarawak

The design rainfall temporal patterns for Sabah and Sarawak were derived in HP 26 (2018). The temporal patterns of durations 0.25, 0.5, 1, 3, 6, 12, 24, 48 and 72 hours were derived for 9 regions as shown in **Figure 2**. In this Procedure, the temporal patterns for Sabah and Sarawak developed in HP 26 (2018) are adopted.

3.2.5 Critical Rainfall Duration

The design storm duration for a selected return period is usually adopted as the duration which gives the maximum discharge. This critical duration can be obtained by trial and error by calculating the design flood for a range of storm durations. A similar practice has been adopted in this Procedure. The hydrograph used for design is the storm duration that gives the highest peak discharge or the highest peak after routing if outflow from storage is required.

Source: HP 26 (2018)

Figure 2: Rainfall Temporal Distribution Regions for Sabah and Sarawak

3.3 Rainfall-Runoff Relationship

In this Procedure, the method used in HP 11 (1976) was adopted to establish the rainfallrunoff relationship, that is, the total accumulated storm rainfall volume for a particular flood event and the direct runoff derived from the flood hydrograph are used to determine the rainfall-runoff relationship.

3.3.1 Peninsular Malaysia

For Peninsular Malaysia, of all the storm data analysed (for the period 1970 – 2000), 177 storms from 37 catchments out of 40 catchments were used to develop the rainfall-runoff relationship (**Table A.1**, **Appendix A**). The remaining events were not used as for these events, the rainfall records did not allow a good estimate of total storm rainfall.

The rainfall-runoff relationships so derived are shown in **Figure 3**. The scatter of points is to be expected since the volume or runoff varies with other factors in addition to rainfall amount such as the catchment moisture status prior to the storm, the surface cover, soil type and the temporal and spatial pattern as well as intensity of rainfall.

In **Figure 3**, the equation was fitted to the observed data by eye giving emphasis to the relatively few points representing the larger floods analysed. For storms smaller than 75 mm, the linear relationship shown in **Figure 3** is recommended. The equations derived for Peninsular Malaysia catchments are:

Q = 0.33 P P < 75 mm (1)
Q =
$$\frac{P^2}{(P+150)}$$
 P > 75 mm (2)

Where P = total storm rainfall in mm Q = direct runoff in mm In this Procedure, no attempts were made to include the catchment antecedent moisture status in the rainfall-runoff relationship as the data were not conclusive enough to justify including an index of catchment antecedent moisture status in the rainfall-runoff relationship.

Figure 3: Rainfall-Runoff Relationship for Peninsular Malaysia Catchments

3.3.2 Sabah

For Sabah, of all the storm data analysed (for the period 1985 – 2013), 82 selected storms from 23 catchments out of 24 catchments were used to develop the rainfall-runoff relationship (**Table A.2**, **Appendix A**). The remaining events were not used as for these events, the rainfall records did not allow a good estimate of total storm rainfall.

In **Figure 4**, the equation was fitted to the observed data by eye giving emphasis to the relatively few points representing the larger floods analysed. For storms smaller than 100 mm, the linear relationship shown in **Figure 4** is recommended. The equations derived for Sabah catchments are:

Q = 0.25 P P < 100 mm (3)
Q =
$$\frac{P^2}{(P+300)}$$
 P > 100 mm (4)

Where

P = total storm rainfall in mm

Q = direct runoff in mm

Figure 4: Rainfall-Runoff Relationship for Sabah Catchments

3.3.3 Sarawak

For Sarawak, of all the storm data analysed (for the period 1985 – 2016), 215 selected storms from 19 catchments were used to develop the rainfall-runoff relationship (**Table A.3**, **Appendix A**). The remaining events were not used as for these events, the rainfall records did not allow a good estimate of total storm rainfall.

In **Figure 5**, the equation was fitted to the observed data by eye giving emphasis to the relatively few points representing the larger floods analysed. For storms smaller than 100 mm, the linear relationship shown in **Figure 5** is recommended. The equations derived for Sarawak catchments are:

Q = 0.38 P P < 100 mm (5)
Q =
$$\frac{P^2}{P+160}$$
 P > 100 mm (6)

Where

P = total storm rainfall in mm

Q = direct runoff in mm

Figure 5: Rainfall-Runoff Relationship for Sarawak Catchments

3.4 The Time Distribution of Runoff

3.4.1 General

There are several methods of distributing the runoff volume with time of which the best known is probably the Unit Hydrograph (UH). The synthetic UH methods have been utilized to describe the entire UH for a gauged catchment with only a few parameters. The hydrograph parameters can be related to catchment characteristics from which the parameters are derived. These methods can be applied to ungauged catchments with similar hydrologic conditions. Many synthetics UH methods have been proposed but the Snyder UH is used in this Procedure because it has been widely used in many countries.

3.4.2 Snyder Unit Hydrograph (UH)

Time parameters such as lag time and time of concentration are essential inputs to common flood discharge models. These parameters of stream flow response time are related to physical features of the catchment such as drainage area, stream length and slope. An estimated catchment lag time is needed to develop a synthetic UH by the methods of Snyder and the Natural Resources Conservation Services (formerly known as Soil Conservation Services (SCS)), whereas the calculation of design discharges by the rational method requires an estimation of the time of concentration.

The concept of catchment lag or lag time is central to the development of unit hydrograph theory. Catchment lag is a global measure of response time, encompassing hydraulic length, catchment gradient and other related factors. Lag time (L_g) has been defined in several different ways. In this Procedure, lag time is defined as the time difference from the centroid of the net rainfall to the peak discharge at the catchment outlet. This definition is the one used in Snyder and SCS synthetic UH models. Another definition adopted by United States Bureau of Reclamation (USBR, 1978) for lag time is the time difference from the centroid of the net rainfall to the mid volume of direct runoff (see **Figure 6**).

There are several definitions of lag time, depending on what particular instant is taken to describe the occurrences of either unit rainfall or runoff. Ponce (1989) documented several definitions of lag time (see **Figure 6**). In **Figure 6**, T1 is defined as the lag time from the beginning of continuous excess rainfall to the centroid of direct runoff. T2 is the lag time from centroid of excess rainfall to the peak of direct runoff hydrograph. T3 is the lag time from centroid of excess rainfall to the centroid of direct runoff. T4 is the lag time from centroid of total rainfall to centroid of direct runoff. T5 is the lag time from the beginning of continuous rainfall to the peak of direct runoff. T6 is the lag time from end of rainfall to the point of inflection on direct runoff recession. T7 is the lag time from centroid of total rainfall to the peak of direct runoff hydrograph. In this Procedure, T2 is adopted as it is consistent with the definitions of Snyder and HEC-HMS. T3 was used in HP 11 (1976).

Figure 6: Alternative Definition of Catchment Lag (Ponce)

3.4.3 Snyder UH Peaking Coefficient

A common descriptor of the shape of the Snyder UH is the peaking coefficient (C_p). The peaking coefficient is a dimensionless parameter represented by the formula:

$$Q_{\rm p} = \frac{C_{\rm p} \, U \, A}{L_{\rm g}} \tag{7}$$

In which Q_p is the peak discharge, U is the unit depth of net rainfall, A is the catchment area and L_g is the lag time.

In Flood Runoff Analysis (USACE, 1994), it was stated that the original development of Snyder method and values for C_p were made with data from the Appalachian Mountain region. Subsequent applications in other regions produced values for the coefficients that were substantially different. The coefficients should be calibrated with data from the region in which they were applied. Indeed, it is not necessary to adopt the form of the original equation for L_g . Regression analysis can be used to develop expressions for L_g and C_p that consider measurable catchment characteristics. According to a number of studies, C_p tends to be fairly constant but is weakly correlated to the catchment parameters such as catchment area, stream length and stream slope. Therefore, regional average values were adopted for particular area studied. Some ranges and regional average values of C_p are listed in **Table 2**.

Location	*Range of C _p	Regional Average C _p Value	Source
Kansas	0.46 to 0.77	0.62	McEnroe and Zhao, 1999
Appalachian Mountain	0.56 to 0.69	0.60	Ponce, 1989
Central Texas and Central Nebraska	-	0.80	Viessman and Lewis, 1995
Southern California	-	0.90	Viessman and Lewis, 1995
Montana	0.2 to 0.8	0.52	USGS, 1996
Experimental catchments New Zealand	0.4 to 0.88	0.64	Hoffmeister and Weisman, 1977
Kum river Korea	0.31 to 0.8	0.60	Jeong et. al, 2001
Ethopia	0.063 to 0.344	-	Azeze, 2004
Attanagalu Oya river India	0.25 to 0.44	0.38	Halwatura and Najim, 2013; Thapa and Wijesekera, 2017

Table 2: Ranges and Regiona	I Average Values of C _p
------------------------------------	------------------------------------

*Remarks: *Values derived from individual catchment*

The average value of C_p is between 0.46 and 0.77 (McEnroe and Zhao, 1999). In the SCS synthetic UH method, C_p is assigned with a constant value of 0.75. Snyder gave C_p value in the range 0.56 to 0.69 (Ponce, 1989). The Snyder synthetic UH method requires C_p as an input. The peak discharge of the synthetic UH is directly proportional to C_p .

3.4.4 Snyder UH Parameter Determination

3.4.4.1 Selection of Rainfall-Runoff Events

Due to the limitations of streamflow data, stations with reasonable flow records for various catchment sizes where data were available for deriving the Snyder UH were used. In Peninsular Malaysia, data were more complete for catchments less than 2,000 km². However, in Sabah and Sarawak, there were fewer gauged catchments smaller than 2,000 km². In order to have more data for model calibration, record of some catchments with area greater than 2,000 km² were also used.

In the development of this Procedure, rainfall-runoff events were discarded if:

- (i) The hydrographs were multi-peaked.
- (ii) The hydrographs started before the hyetographs, indicating inconsistency in the timing of rainfall and runoff.
- (iii) The hydrographs started after the hyetograph ended, indicating inconsistency in the rainfall runoff records.
- (iv) The centroid of effective rainfall occurring after the centroid of runoff, indicating inconsistency in the timing of rainfall and runoff.
- (v) Direct runoff greater than total rainfall for a storm event, indicating inconsistency in rainfall runoff record.

3.4.4.2 Snyder UH Modelling Using HEC-HMS

HP 11 (1976) has been developed using the Snyder UH method. Snyder UH is a synthetic and parametric UH method. UH defines all pertinent properties with one or more equations, each of which has one or more parameters. When the parameters are specified, the equations can be solved, yielding the UH ordinates.

The Hydrologic Modelling System (HEC-HMS) program of Hydrologic Engineering Centre has been developed to derive flood hydrographs (historical and design) using UH method including the Snyder UH. It can also be used to obtain the Snyder parameter values i.e. the lag time and peaking coefficient, via calibration with storm rainfall runoff data. The HEC-HMS model has a calibration module with optimisation algorithm to facilitate the derivation of the UH parameters.

The runoff volume of the UH is one-unit rainfall excess depth multiplied by the catchment area. Therefore, for a triangular UH, once the UH peak and the time to UH peak are known, the UH time base and all the ordinates of the UH can be calculated.

A synthetic UH relates the parameters of a parametric UH to catchment characteristics. Using the relationships, it is possible to develop a UH for catchments other than the catchment originally used to derive the UH.

For a standard UH of a catchment, the average catchment lag time derived using several recorded rainfall-runoff events through calibration is usually adopted as the catchment lag time for gauged catchment. For ungauged catchment, the catchment lag time can be estimated using a regional formula relating catchment lag of gauged catchment to catchment characteristics such as catchment area, main stream length and stream slope.

Snyder provided the relationships for estimating the UH parameters from catchment characteristics. Snyder selected the lag, peak flow and total time base as the critical characteristics of a UH. Herein the lag is the difference in the time of the UH peak and the time associated with the centroid of the excess rainfall hyetograph (**Figure 6**).

Snyder defined the standard UH as one whose rainfall duration, t_r (in hr), is related to the catchment lag time, L_g (in hr), by:

$$L_{g} = 5.5 t_{r}$$
 (8)

Thus, if the catchment lag time is known, rainfall duration of the standard Snyder UH can be obtained. If the rainfall duration of the required UH is different from the rainfall duration of the standard UH specified in **Equation 8** (for example, unit hydrographs are normally derived for durations at multiple of minutes or multiple of hours depending on

the catchment time of response and the rainfall temporal pattern and duration), the following relationship can be used to define UH lag time and required UH duration:

$$t_{pR} = L_g - \frac{t_r - t_R}{4} \tag{9}$$

Where

 $t_R\,$ is the rainfall duration of required UH in hr

 $t_{pR}\;$ is the lag time of required UH in hr

The required duration is determined based on the catchment time of response and catchment rainfall duration and temporal pattern.

For the standard UH, the peak discharge per unit of excess rainfall per unit area of the catchment is:

$$q_{p} = \frac{C C_{p}}{L_{g}}$$
(10)

Where

 q_p is peak discharge of standard UH in $\ensuremath{\text{m}^3\text{/s/km^2/mm}}$

C_p is UH peaking coefficient

C is conversion factor (0.275 for 1 mm standard UH)

For other required durations, the UH peak discharge, q_{pR} is:

$$q_{pR} = \frac{C C_p}{t_{pR}}$$
(11)

Where

 q_{pR} is peak discharge of required UH in m³/s/km²/mm

C_p is UH peaking coefficient

C is conversion factor (0.275 for 1 mm standard UH)

 t_{pR} is lag time of required UH in hr

The time base, t_b of the UH can be determined using the fact that the area under the UH is equivalent to a direct runoff of 1 mm. Assuming a triangular shape for the UH, the base time may be estimated by:

$$t_{\rm b} = \frac{0.556}{q_{\rm pR}} \tag{12}$$

Where

t_b is time base in hr

 q_{pR} is peak discharge of required UH in m³/s/km²/mm

The time to peak, $T_{p}% = T_{p}^{2}$ of the UH can be calculated using:

$$T_p = t_{pR} + \frac{t_R}{2}$$
(13)

Where

T_p is time to peak in hr

 $t_{\mbox{\scriptsize pR}}$ is lag time of required UH in hr

 $t_R\,$ is the rainfall duration of required UH in hr

3.4.4.3 Computation of Lag Time and Peaking Coefficient

The calibration feature in the HEC-HMS flood hydrograph program was used to determine the lag time and peaking coefficient for the individual event. Each catchment was modelled as a single basin. Catchment rainfall was estimated using records from the catchments. The computation of lag times from rainfall and flow data requires the separation of baseflow and the computation of net or excess rainfall.

For this Procedure, the exponential recession module of HEC-HMS to calculate baseflow and direct runoff of the catchments was used. The effect of baseflow on the streamflow hydrograph are defined by three parameters:

- (i) the discharge at the start of the storm
- (ii) the discharge below which baseflow recession occurs and
- (iii) the ratio of recession discharge

The parameters were estimated by inspection of recorded hydrographs and input as initial values. Final values were estimated by the program using calibration and

optimization facilities of the program. Baseflow calculated was subtracted from the total storm hydrograph to obtain the direct runoff hydrograph.

The initial and uniform loss model was used to compute the excess rainfall. In the initial and uniform loss model, all rainfall is lost until the initial loss is satisfied. After the initial loss is satisfied, rainfall is lost at a specified constant rate. The initial loss and constant loss rate for each event were determined by calibration within HEC-HMS.

In HEC-HMS, a synthetic UH can be generated by several different models, including the Snyder model. The Snyder model in HEC-HMS has two parameters: the catchment lag time and the peaking coefficient. The values of the synthetic UH can be determined by the calibration module within HEC-HMS.

3.4.4.4 Parameter Estimation in HEC-HMS

HEC-HMS used a numerical index to measure the closeness of fit of the computed and observed hydrographs. The objective function that is minimized by optimization routine is a discharge weighted root-mean square error. This objective function is:

STDER =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (Q_o - Q_c)^2 WT_i}$$
 (14)

In which Q_o and Q_c are observed and computed discharges at time index i, WT_i is the weighting factor for time index i, and n is the number of ordinates of the hydrograph. The weighting factor, $WT_i = \frac{Q_o + Q_c}{2 Q_{ave}}$, in which Q_{ave} is the average of observed discharge. This objective function provides an index of how closely the observed hydrograph is replicated. It is weighted to emphasize the closeness of fit at the high flows. An improvement in the fit at the highest flows yields the greatest reduction in the objective function (HEC, 2016). This emphasis on high flows is appropriate for flood hydrograph analysis.

HEC-HMS uses a univariate gradient search procedure to determine the optimal parameter estimates. This search procedure minimizes the partial derivatives of the objective function with respect to the unknown parameters. A single parameter is varied in each iteration. The derivatives are estimated numerically, and Newton's technique is used to improve parameter estimates. The optimization does not guarantee a global optimum solution of the objective function. Different initial values can result in different optimal values.

3.4.4.5 Model Calibration

The main aim of this Procedure was to use gauged data to derive the Snyder UH parameters and these established Snyder UH parameters would be adopted for ungauged catchments on a regional basis. Hence the availability, coverage and quality of storm data were among the important factors in the selection of catchments to be used in this Procedure. The criteria for selection of storm events and catchments for Snyder UH parameterisation were as follows:

- (i) Catchment area not exceedingly large
- (ii) Continuous and complete records

(i) Calibration for Peninsular Malaysia

727 storm events from 40 selected catchments throughout Peninsular Malaysia were used to estimate the Snyder parameters by employing the HEC-HMS Calibration Module. As recorded rainfall and streamflow data were available since 1970, Snyder UH parameters (L_g and C_p) derived from 581 storms (mainly from the period 1970 – 2000) were subsequently used to derive the coefficient values in the lag (L_g) equation (see **Equation 17**). The remaining 146 events (mainly 2001 – 2017) were used to verify the derived coefficient values. This was to ensure that sufficient data were available for both derivation and verification of the parameter values.

(ii) Calibration for Sabah

371 storm events from 24 selected catchments throughout Sabah were used to estimate the Snyder parameters by employing the HEC-HMS Calibration Module. As recorded rainfall and streamflow data were available since 1985, Snyder UH parameters (L_g and C_p) derived from 253 storms (mainly from the period 1985 – 2000) were subsequently used to derive the coefficient values in the lag (L_g) equation (see **Equation 19**). The remaining 118 events (mainly 2001 – 2016) were used to verify the derived coefficient values. This was to ensure that sufficient data were available for both derivation and verification of the parameter values.

(iii) Calibration for Sarawak

377 storm events from 19 selected catchments throughout Sarawak were used to estimate the Snyder parameters by employing the HEC-HMS Calibration Module. As recorded rainfall and streamflow data were available since 1977, Snyder UH parameters (L_g and C_p) derived from 272 storms (mainly from the period 1985 – 2000) were subsequently used to derive the coefficient values in the lag (L_g) equation (see **Equation 20**). The remaining 105 events (mainly 2001 – 2016) were used to verify the derived coefficient values. This was to ensure that sufficient data were available for both derivation and verification of the parameter values.

Some observed and simulated hydrographs from Peninsular Malaysia, Sabah and Sarawak are shown in **Appendix B** for illustration purpose.

3.5 Average Lag Time (Lg) for Gauged Catchments

From all the selected individual storm events which yielded individual L_g and C_p values, single L_g and C_p for each catchment were derived by averaging.

(i) Peninsular Malaysia

Table C.1 (Appendix C) shows the average lag time and peaking coefficient for the 40 selected catchments in Peninsular Malaysia. The averaged values of L_g and C_p for each catchment were used in the regression analysis to derive the regression coefficients of the lag equation to be used for ungauged catchments.

(ii) Sabah

Table C.2 (Appendix C) shows the average lag time and peaking coefficient for the 24 selected catchments Sabah. The averaged values of L_g and C_p for 22 out of 24 catchments were used in the regression analysis to derive the regression coefficients of the lag equation to be used for ungauged catchments.

(iii) Sarawak

Table C.3 (Appendix C) shows the average lag time and peaking coefficient for the 19 selected catchments in Sarawak. The averaged values of L_g and C_p for 14 out of 19 catchments were used in the regression analysis to derive the regression coefficients of the lag equation to be used for ungauged catchments.

3.6 Lag Time (Lg) Equation Development

Equations relating L_g and catchment characteristics are required to estimate L_g for ungauged catchments. For example, L_g is related to main stream length and slope according to Carter (1961), McEnroe and Zhao (1999) and Jeong et al. (2001). L_g equation developed by Snyder (1938) included a coefficient that varies geographically (C_t) , main stream length (L) and distance along the main stream from the outlet to the point nearest to the centroid of the catchment (L_c) . Simple and multiple linear regressions were used to determine the mathematical relationships of L_g and catchment characteristics such as area, main stream length and slope for the catchments with lag times calibrated using recorded storm events. Generally, L_g is more correlated to catchment area, main stream length and slope.

The accuracy of regression analysis (regression equations) are expressed by the two standard statistical measures R, the coefficient of correlation and R² the coefficient of determination. R indicates the correlation between the dependent and independent variables. R² shows how much variation in the dependent variable can be accounted for by the independent variables. For example, an R² of 0.94 indicates that 94% of the variation is accounted for by the independent variables and that 6% is due to other factors. A higher R² means the regression line (equation) fits the data better.

The simple linear equation is of the form:

$$y = a + bx1 + cx2 + dx3 + ...$$
 (15)

Where y is the dependent variable, x1, x2, x3... are independent variables and a, b, c... are coefficients.

The multiple linear regression formula is:

$$y = ax1^b x2^c x3^d...$$
 (16)

Logarithmic transformation of **Equation 16** results in a linear equation with respect to the logarithms of the variables.

(i) Lag Equation for Peninsular Malaysia

The best fit lag equation for Peninsular Malaysia is:

$$L_{g} = 0.639 \ A^{0.4143} \ L^{0.1403} \ S^{-0.4321}$$
(17)

Where

 L_g is the lag time in hr

A is the catchment area in km²

L is the main stream length from catchment divide to catchment outlet in km

S is the weighted slope of main stream in %

 $R = 0.93, R^2 = 0.86$

To calculate the weighted slope of the catchment main stream, the main stream was divided into a number of points. The elevation and distance at point i were measured and the weighted slope was then calculated using the Excel slope equation:

$$S = \frac{\sum (l_i - \overline{l})(h_i - \overline{h})}{\sum (l_i - \overline{l})^2} 100$$
(18)

Where

S is the weighted slope of main stream in %

 \mathbf{l}_{i} is the length of the main stream from catchment outlet to point i in m

 \boldsymbol{h}_i is the elevation of the main stream at point i in m

 $\overline{h}\,$ and \overline{l} are the average values of h_i and l_i

(ii) Lag Equation for Sabah

The best fit lag equation for Sabah is:

$$L_{g} = 5.145 A^{-0.1174} L^{0.2417} S^{-0.7157}$$
(19)

Where

 L_g is the lag time in hr A is the catchment area in km² L is the main stream length from catchment divide to catchment outlet in km S is the weighted slope of main stream in % R = 0.94, R² = 0.88

(iii) Lag Equation for Sarawak

The best fit lag equation for Sarawak is:

$$L_{g} = 2.701 A^{-0.2954} L^{0.6795} S^{-0.3737}$$
(20)

Where

 L_g is the lag time in hr A is the catchment area in km² L is the main stream length from catchment divide to catchment outlet in km S is the weighted slope of main stream in % R = 0.91, R² = 0.83

3.7 Peaking Coefficients (C_p)

Correlation analysis showed that C_p is not strongly related to any catchment characteristics. When C_p is plotted against A, L, L_c , S and L_g , a flat slope exists and shows only a small amount of scatter for the regression line due to weak correlation between C_p and the catchment parameters. Therefore, the use of an average value for C_p may be just as reliable as the use of a regression equation.

Average catchment C_p are normally obtained by calibrating several recorded storm runoff events from the catchment and average the C_p values derived from these events. C_p values vary from storm to storm for a catchment and it is not correlated to the storm or flood magnitude. A range of C_p values was obtained from studies throughout the world using recorded events, examples are shown in **Section 3.4.3**. The recommended range of C_p and regional average C_p for Peninsular Malaysia, Sabah and Sarawak are shown in **Table 3**.

Table 3: The Recommended Range of $\mathbf{C}_{\mathbf{p}}$ and Regional Average $\mathbf{C}_{\mathbf{p}}$ for Peninsular Malays	sia,
Sabah and Sarawak	

Location	Range of C_p	Regional Average C _p
Peninsular Malaysia	0.34 to 0.72	0.55
Sabah	0.33 to 0.72	0.54
Sarawak	0.42 to 0.78	0.64

3.8 Design Baseflow (Q_B)

A baseflow is required to derive the total design hydrograph. It is difficult to predict the statistical characteristics of baseflow prior to a major flood. For this Procedure, baseflows of the recorded hydrographs for the catchments before the occurrence of the floods were averaged. Baseflows were taken from flood events with rather dry and moderately wet antecedent conditions as observed on the catchment studied.

(i) Peninsular Malaysia

The average baseflows for the catchments in Peninsular Malaysia were plotted against the catchment area as shown in **Figure 7.** A best fit equation was derived for general use. The equation is:

$$Q_{\rm B} = 0.11 \, {\rm A}^{0.8589} \tag{21}$$

Where $Q_{\rm B}$ is the baseflow in m³/s A is the catchment area in km²

Figure 7: Baseflow and Catchment Area Relationship for Peninsular Malaysia

(ii) Sabah

The average baseflows for the catchments in Sabah were plotted against the catchment area as shown in **Figure 8.** A best fit equation was derived for general use. The equation is:

$$Q_{\rm B} = 0.0783 \, {\rm A}^{0.8653} \tag{22}$$

Where

 $Q_{\rm B}$ is the baseflow in m³/s A is the catchment area in \mbox{km}^2

Figure 8: Baseflow and Catchment Area Relationship for Sabah

(iii) Sarawak

The average baseflows for the catchments in Sarawak were plotted against the catchment area as shown in **Figure 9.** A best fit equation was derived for general use. The equation is:

$$Q_{\rm B} = 0.0111 \, {\rm A}^{1.1682} \tag{23}$$
Where

 Q_B is the baseflow in m³/s

A is the catchment area in km²

Figure 9: Baseflow and Catchment Area Relationship for Sarawak

3.9 Derivation of the Design Flood Hydrograph using Computer Program

A computer program in MS Excel was developed for use in estimating the design flood for ungauged catchments for this Procedure. This is a simple and easy to use program and needs only minimum input. The equations related to storm duration, peak discharge, time to peak and time base of the Snyder UH are embedded in the computer program (See **Section 3.4.4.2** for more information of the Snyder method).

A triangular UH can be derived using Snyder method and input of catchment data. With the rainfall data input and the calculation of runoff using the rainfall-runoff relationship derived for this Procedure, a convolution algorithm transforms the direct runoff into flood discharge. The rainfall temporal patterns were incorporated into the program thus making input into the program simple. The user needs to input only catchment data such as catchment area, main stream length, stream slope and the Snyder peaking coefficient for the program to estimate catchment lag and Snyder UH. Design rainfall, ARF and rainfall pattern region also need to be input to estimate the direct runoff from the catchment. A baseflow is calculated using the built-in formula. The program will display the UH, direct runoff and total runoff hydrographs in tabular form and the total runoff hydrograph in graphical form. The computer program in excel sheet is shown in **Appendix D**.

4. Application of the Procedure

4.1 Application of the Procedure using Manual Calculation

Snyder UH method is used for calculation of design hydrograph. Method of application for manual calculation is shown below:

Step 1: Determine the catchment area, main stream length and weighted stream slope from the topographical map, manually or using the GIS tools.

Step 2: Obtain the design rainfall for the specified return period using HP 1 (2015) for Peninsular Malaysia and HP 26 (2018) for Sabah and Sarawak or perform a frequency analysis using DID data for rainfall stations in or near the catchment.

Step 3: Obtain or interpolate the ARF from **Table 1** for Peninsular Malaysia, Sabah and Sarawak.

Step 4: Determine the rainfall temporal pattern region from **Figure 1** for Peninsular Malaysia and **Figure 2** for Sabah and Sarawak.

Step 5: Calculate the lag time, L_g (using Equation 17, Equation 19) or Equation 20).

Step 6: Calculate the rainfall duration of standard UH, t_r (using Equation 8).

Step 7: Determine the required rainfall duration of the derived UH, t_R (depending on rainfall temporal pattern and catchment response time).

Step 8: Calculate the required catchment lag time (time difference between the centroid of excess rainfall hyetograph and UH peak), t_{pR} (using **Equation 9**).

Step 9: Calculate the peak discharge per unit catchment area of the standard UH, q_p using **Equation 10**.

Step 10: Calculate the peak discharge per unit of catchment area of the required UH, q_{pR} using **Equation 11**.

Step 11: Calculate the catchment peak discharge of UH, $Q_{\rm p}.$

Step 12: Calculate the time base of UH, t_b using Equation 12.

Step 13: Calculate the time to peak of UH, T_p using Equation 13.

Step 14: Calculate the number of intervals in t_b , assuming triangular UH.

Step 15: Calculate the number of intervals in T_p.

Step 16: Calculate and check the volume of UH runoff.

Step 17: Calculate the UH ordinates using similar triangle.

Step 18: Determine the catchment rainfall.

Step 19: Determine the direct runoff (using **Equation 1** to **Equation 6** depending on the location and total rainfall amount).

Step 20: Calculate the baseflow (using **Equation 21, Equation 22** or **Equation 23** for Peninsular Malaysia, Sabah and Sarawak respectively).

Step 21: Perform the UH Convolution.

Step 22: Calculate and plot the total runoff hydrograph.

4.2 Application of the Procedure using Computer Program

The Excel program has been developed to estimate the design flood hydrograph for any catchment located in the Peninsular Malaysia, Sabah and Sarawak using the Snyder method. The user only needs to enter the catchment properties data such as catchment size, main stream length and stream slope. Design rainfall and ARF are also required as inputs to the computer program. Rainfall temporal patterns for Peninsular Malaysia, Sabah and Sarawak are embedded in the computer program. The outputs of this program are the total hydrograph and peak discharge.

The method of application is as follows:

Step 1: Determine the catchment area, main stream length and weighted stream slope from the topographical map, manually or using the GIS tools.

Step 2: Obtain the design rainfall for the specified return period using HP 1 (2015) for Peninsular Malaysia and HP 26 (2018) for Sabah and Sarawak or perform a frequency analysis using DID data for rainfall stations in or near the catchment.

Step 3: Obtain or interpolate the ARF from **Table 1** for Peninsular Malaysia, Sabah and Sarawak.

Step 4: Determine the rainfall temporal pattern region from **Figure 1** for Peninsular Malaysia and **Figure 2** for Sabah and Sarawak.

Step 5: Enter the data into the Excel program. Results will be displayed in Excel worksheet.

4.3 Worked Examples

Example 1: Flood Hydrograph for Peninsular Malaysia

Problem:

It is proposed to construct a small weir across Sg Sungkai located in Kg Gajah. Estimate the 20-year design flood hydrograph using Snyder UH method. Calculate the total hydrograph for a 6-hour storm.

Solution using manual calculation:

Step 1: Determine the catchment area, main stream length and weighted stream slope from the topographical map, manually or using the GIS tools.
Catchment Area, A: 289 km²
River length, L: 45 km
Weighted slope of main stream, S: 2.95 %
Peaking Coefficient, C_p: 0.55 from Table 3

Step 2: Obtain the design rainfall for the specified return period using HP 1 (2015). Design rainfall of 20-year ARI (6 hours) is 132 mm.

Step 3: Interpolate the ARF from **Table 1**.

Rainfall temporal pattern for Region 3:

The ARF value is 0.88.

Step 4: Determine the rainfall temporal pattern region from **Figure 1** for Peninsular Malaysia.

Time (brs)	0.5	10	15	2	25	3
11110 (1113)	0.5	1.0	1.5	2	2.5	5
Proportion of total rainfall	0.045	0.070	0.078	0.099	0.113	0.129

Proportion of total rainfall	0.045	0.070	0.078	0.099	0.113	0.129
Time (hrs)	35	4	45	5	55	6

Time (hrs)	3.5	4	4.5	5	5.5	6
Proportion of total rainfall	0.121	0.099	0.081	0.076	0.047	0.041

Step 5: Calculate the lag time, L_g (using Equation 17). $L_g = 0.639 \ A^{0.4143} \ L^{0.1403} \ S^{-0.4321}$ $= 0.639 \ x \ 289^{0.4143} \ x \ 45^{0.1403} \ x \ 2.95^{-0.4321}$ $= 7.14 \ hrs$

Step 6: Calculate the rainfall duration of standard UH, t_r (using Equation 8).

$$t_r = \frac{L_g}{5.5} = \frac{7.14}{5.5} = 1.3 \text{ hrs}$$

Step 7: Determine the required rainfall duration of the derived unit hydrograph, t_R (depending on rainfall temporal pattern and catchment response time).

 $t_R = 0.5 hr$ for a 0.5 hr UH (time interval used for a 6-hour storm)

This is set according to the rainfall temporal pattern. Normally $t_R \leq \frac{L_g}{5}$.

Step 8: Calculate the required catchment lag time (time difference between the centroid of excess rainfall hyetograph and unit hydrograph peak), t_{pR} (using **Equation 9**).

$$t_{pR} = L_g - \frac{t_r - t_R}{4} = 7.14 - \frac{(1.3 - 0.5)}{4} = 6.94 hr$$

Step 9: Calculate the peak discharge per unit catchment area of the standard UH, q_p using **Equation 10**.

$$q_p = \frac{C C_p}{L_g} = \frac{0.275 \times 0.55}{7.14} = 0.021 \text{ m}^3/\text{s/km}^2/\text{mm}$$

Step 10: Calculate the peak discharge per unit of catchment area of the required UH, q_{pR} using **Equation 11**.

$$q_{pR} = \frac{C C_p}{t_{pR}} = \frac{0.275 \times 0.55}{6.94} = 0.022 \text{ m}^3/\text{s/km}^2/\text{mm}$$

Step 11: Calculate the catchment peak discharge of UH, Q_p .

 $Q_p = q_{pR} x A = 0.022 x 289 = 6.36 m^3/s/mm$

Step 12: Calculate the time base of UH, t_b using Equation 12.

$$t_{\rm b} = \frac{0.556}{q_{\rm pR}} = \frac{0.556}{0.022} = 25.27 \, \rm hr$$

Step 13: Calculate the time to peak of UH, T_{p} using $\mbox{Equation 13}.$

$$T_p = t_{pR} + \frac{t_R}{2} = 6.94 + \frac{0.5}{2} = 7.19 \text{ hr}$$

Step 14: Calculate the number of intervals in t_b, assuming triangular UH.

N3B = $\frac{t_b}{t_R} = \frac{25.27}{0.5} = 50.5 ~(\approx 51)$ Round to integer for ease of calculation

Step 15: Calculate the number of intervals in T_p.

N3A = $\frac{T_p}{t_R} = \frac{7.19}{0.5} = 14.3 ~(\approx 14)$ Round to integer for ease of calculation

Step 16: Calculate and check the volume of UH runoff.

Revised
$$Q_p = \frac{Q_p}{Volume} = \frac{6.36}{1.01} = 6.3 \text{ m}^3/\text{s}$$

Re-calculate the volume using the revised \boldsymbol{Q}_p :

Volume =
$$\frac{\frac{1}{2} x t_b x Q_p}{A} = \frac{\frac{1}{2} x 0.5 x 51 x 6.3 x 3600 x 1000}{289 x 1000 x 1000} = 1 \text{ mm OK}$$

Adjusted UH is plotted as shown below:

Step 17: Calculate the UH ordinates using similar triangle.

Time interval	Discharge (m ³ /s)
1 (0.5 hr)	0.45
2 (1 hr)	0.90
3 (1.5 hr)	1.35
4 (2 hr)	1.80
5 (2.5 hr)	2.25
•	•
•	•
50 (25 hr)	0.17

Step 18: Determine the catchment rainfall.

Design rainfall for 6-hour duration = 132 mm

ARF = 0.88

Catchment rainfall = 0.88 x 132 = 116 mm

Step 19: Determine the direct runoff (using **Equation 2**).

Direct runoff, $Q = \frac{P^2}{(P+150)} = \frac{116^2}{(116+150)} = 50.6 \text{ mm}$

Distribution of direct runoff based on proportion of total rainfall.

Time (hrs)	0.5	1.0	1.5	2	2.5	3
Runoff (mm)	2.28	3.54	3.95	5.01	5.72	6.53

Time (hrs)	3.5	4	4.5	5	5.5	6
Runoff (mm)	6.12	5.01	4.10	3.84	2.38	2.07

Step 20: Calculate the baseflow (using Equation 21 for Peninsular Malaysia).

 $Q_B = 0.11 \ A^{0.8589} = 0.11 \ x \ 289^{0.8589} = 14.3 \ m^3/s$

Step 21: Perform the UH Convolution.

Refer to Table A.

Interval No	Total runoff
0	14.3
1	15.3
2	17.9
3	22.3
4	29.0
5	38.2
•	
•	
•	
55	31.0
56	25.9
57	21.9
58	18.9
59	16.8
60	15.4
61	14.6

Table A: UH Convolution for Example 1

	A	B	С	D	E	F	G	Н	Ι	J	К	L	Μ	Ν	0	Р	Q	R	S	Т	U	V	W	Х
1	Time Interval	Discharge (m ³ /s)				Rain	fall data input					Incr	emental rai	nfall expres	sed as pro	portion of t	otal storm	rainfal	11					
3		Discharge (m / s/	I			P	ARF	Region		Interval	1	2	3	4	5	6	7	8		10	11	12		
4	0	0				132	0.88	3		12	0.045	0.07	0.078	0.099	0.113	0.129	0.121	0.099	0.081	0.076	0.047 (0.041		
5	1	0.45				Catchmer	nt rainfall					Increr	mental rainfa	all excess										
6	2	0.90				Catchment	Total Excess	RE1	RE2	RE3	RE4	RE5	RE6	RE7	RE8	RE9	RE10	RE11	RE12					
_		1.05				rainfall	RF													-				
/	3	1.35			I	116	50.6	2.28	3.54	3.95	5.01	5.72	6.53	6.12	5.01	4.10	3.84	2.38	2.07	-				
a a	5	2.25	0.2										Direct run	off volume			8114	ŀ	m ³ /s.nr	1				
10	6	2.70	14.3								Ra	infall excess	for time int	erval			50.54							
11	7	3.15	Time Interval	Discharge (m ³ /s)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Direct runoff	Total runoff
12	8	3.60	0		2.28	3.54	3.95	5.01	5.72	6.53	6.12	5.01	4.10	3.84	2.38	2.07	<u> </u>				· · · · ·		0.00	14.3
13	9	4.05	1	0.45	1.02]						1.02	15.3
14	10	4.50	2	0.90	2.05	1.59																	3.64	17.9
15	11	4.95	3	1.35	3.07	3.19	1.77										-					F	8.03	22.3
16	12	5.40	4	1.80	4.10	4.78	3.55	2.25									4					⊢	14.67	29.0
1/	13	5.85	5	2.25	5.12	6.37	5.32	4.50	2.57	2.02							-					F	23.89	38.2
10	14	6.30	5	2.70	6.14	7.96	7.10	6.76	5.14	2.93	2.75						-					ŀ	36.04	50.3
20	16	5.96	/ 8	3.60	8.19	9.50 11 15	10.65	11 26	10.28	8.80	5.51	2 25					1					ŀ	68.09	82.4
21	17	5.79	9	4.05	9.21	12.74	12.42	13.51	12.85	11.74	8.26	4.50	1.84				1					F	87.09	101.4
22	18	5.62	10	4.50	10.24	14.33	14.20	15.77	15.42	14.67	11.01	6.76	3.69	1.73			1					F	107.81	122.1
23	19	5.45	11	4.95	11.26	15.93	15.97	18.02	18.00	17.61	13.76	9.01	5.53	3.46	1.07		1						129.61	143.9
			•														-					_		
•																	-					_		
44	40	1.87	32	3.23	7.36	12.05	14.10	18.75	22.37	26.65	26.04	22.16	18.83	18.32	11.73	10.59	4					-	208.95	223.2
45	41	1.70	33	3.06	6.97	11.45	13.43	17.90	21.40	25.54	25.00	21.31	18.13	17.66	11.33	10.24	-					-	200.35	214.6
46	42	1.53	34	2.89	6.59	10.85	12.76	17.04	20.43	24.43	23.96	20.45	17.43	17.01	10.92	9.88	-					H	191.75	206.0
47	43	1.50	35	2.72	5.81	9.64	12.09	15.19	19.45	23.32	22.92	19.60	16.73	15.30	10.52	9.55	-					H	183.15	197.4
49	45	1.02	37	2.38	5.42	9.04	10.74	14.49	17.51	21.10	20.83	17.90	15.34	15.05	9.71	8.82	1					F	165.95	180.2
50	46	0.85	38	2.21	5.04	8.44	10.07	13.64	16.54	19.99	19.79	17.04	14.64	14.39	9.31	8.47	1					F	157.35	171.6
51	47	0.68	39	2.04	4.65	7.83	9.40	12.78	15.56	18.88	18.75	16.19	13.95	13.74	8.90	8.12	1						148.75	163.0
52	48	0.51	40	1.87	4.26	7.23	8.73	11.93	14.59	17.77	17.71	15.34	13.25	13.08	8.50	7.76]						140.15	154.4
53	49	0.34	41	1.70	3.87	6.63	8.06	11.08	13.62	16.66	16.67	14.49	12.55	12.43	8.09	7.41							131.55	145.8
54	50	0.17	42	1.53	3.49	6.03	7.39	10.23	12.65	15.55	15.62	13.64	11.85	11.78	7.69	7.06	4						122.95	137.2
55			43	1.36	3.10	5.42	6.71	9.37	11.67	14.44	14.58	12.78	11.16	11.12	7.28	6.71	-					-	114.35	128.6
56			44	1.19	2.71	4.82	6.04	8.52	10.70	13.33	13.54	11.93	10.46	10.47	6.88	6.35	-					-	105.75	120.0
58			45	0.85	2.32	4.22	5.37	6.82	9.73	12.22	12.50	10.23	9.76	9.81	6.07	5.65	-					H	97.15	111.4
59			40	0.65	1.54	3.02	4.70	5.97	7.78	9.99	10.42	9.37	8.37	8.51	5.66	5.05	1					F	79.95	94.2
60			48	0.51	1.16	2.41	3.36	5.11	6.81	8.88	9.37	8.52	7.67	7.85	5.26	4.94	1					F	71.35	85.6
61			49	0.34	0.77	1.81	2.69	4.26	5.84	7.77	8.33	7.67	6.97	7.20	4.86	4.59	1					F	62.75	77.0
62			50	0.17	0.39	1.21	2.01	3.41	4.86	6.66	7.29	6.82	6.28	6.54	4.45	4.24	1					F	54.15	68.4
63			51			0.60	1.34	2.56	3.89	5.55	6.25	5.97	5.58	5.89	4.05	3.88]						45.56	59.8
64			52				0.67	1.70	2.92	4.44	5.21	5.11	4.88	5.23	3.64	3.53							37.34	51.6
65			53					0.85	1.95	3.33	4.17	4.26	4.18	4.58	3.24	3.18	1					Ĺ	29.73	44.0
66			54						0.97	2.22	3.12	3.41	3.49	3.93	2.83	2.82	4					Ļ	22.79	37.1
67			55							1.11	2.08	2.56	2.79	3.27	2.43	2.47	4					F	16.71	31.0
68			56								1.04	1.70	2.09	2.62	2.02	2.12	-					⊢	11.60	25.9
69 70			57									0.85	1.39	1.96	1.62	1.76	-					⊢	7.59	21.9
70			50										0.70	1.31	0.91	1.41	1					⊢	4.03	16.9
72			60											0.05	0.01	0.71	1					F	1 11	15.4
73			61												0.70	0.35	1					F	0.35	14.6
																0.00	1					Ĺ	0.00	25

Explanation of the table:

- Column A contains the intervals where the total equals to N3B calculated in Step 14.
- Column B contains the UH ordinates from 1 to 50 calculated in Step 17.
- Cell G7 is the direct runoff calculated from Step 19.
- Cells K4 to V4 are obtained from rainfall temporal pattern (Refer to Step 4).
- Cells H7 to S7 are the rainfall excess which is calculated using the rainfall-runoff relationship.

H7 = G7 x K4 = 50.6 x 0.045 = 2.28

 Column E is calculated by multiplying the incremental rainfall excess in cells E12 to P12 and the discharge of UH ordinates in Column D.
 For interval 1: E13 = E12 x D13 = 2.28 x 0.45 = 1.02

For interval 50: E62 = E12 x D62 = 2.28 x 0.17 = 0.39

• In Column F, the direct runoff starts by a lag of 1 time interval, i. e. starts from second interval

For interval 2: F14 = F12 x D13 = 3.54 x 0.45 = 1.59

For interval 51: F63 = F12 x D62 = 3.54 x 0.17 = 0.6

• In Column G, the direct runoff starts by a lag of 2 time interval, starts from third interval

For interval 3: G15 = G12 x D13 = 3.95 x 0.45 = 1.77

For interval 52: G64 = G12 x D62 = 3.95 x 0.17 = 0.67

• The direct runoff is calculated in Column W

W13 = E13 = 1.02 W14 = E14 + F14 = 2.05 + 1.59 = 3.64 W73 = P73 = 0.35

 Total runoff in Column X is calculated by adding baseflow (cell C10 calculated in Step 20) to the direct runoff (Column W)

X12 = W12 + C10 = 0 + 14.3 = 14.3 X13 = W13 + C10 = 1.02 + 14.3 = 15.3 X73 = W73 + C10 = 0.35 + 14.3 = 14.6

From the Column X, the peak discharge is $301.6 \text{ m}^3/\text{s}$.

39

Solution using computer program:

Area, A: 289 km²

River Length, L: 45 km

Slope: 2.95 %

Peaking Coefficient, Cp: 0.55 from Table 3

Calculate lag time

 $L_g = 0.639 \ A^{0.4143} \ L^{0.1403} \ S^{-0.4321}$ = 0.639 x 289^{0.4143} x 45^{0.1403} x 2.95^{-0.4321} = 7.14 hrs

Design rainfall of 20-year ARI obtained from HP 1 (2015):

Durations (hrs)	6	12	24
Rainfall (mm)	132	149	169
ARF	0.88	0.90	0.93

Peak discharge computed using the computer program:

Rainfall Durations (hrs)	6	12	24
Peak Discharge (m ³ /s)	302	334	313

Derived hydrographs: The critical storm is 12 hours

Example 2: Flood Hydrograph for Sabah

Problem:

It is proposed to construct a small weir across Sg Papar located in Kg Kogopon. Estimate the 50-year design flood hydrograph using Snyder UH method. Calculate the total hydrograph for a 24-hour storm.

Solution using Manual Calculation:

Step 1: Determine the catchment area, main stream length and weighted stream slope from the topographical map, manually or using the GIS tools.
 Catchment Area, A: 546 km²

River length, L: 65.5 km

Weighted slope of main stream, S: 1.37 %

Peaking Coefficient, Cp: 0.54 from Table 3

Step 2: Obtain the design rainfall for the specified return period using HP 26 (2018).

Design rainfall of 50-year ARI (24 hours) is 296 mm.

Step 3: Interpolate the ARF from **Table 1**.

The ARF value is 0.92.

Step 4: Determine the rainfall temporal pattern region **Figure 2** for Sabah.

Rainfall temporal pattern for Region 5:

Time (hrs)	1	2	3	4	5	6	
Proportion of total rainfall	0.01	0.017	0.025	0.025	0.03	0.035	

Time (hrs)	7	8	9	10	11	12
Proportion of total rainfall	0.046	0.05	0.058	0.058	0.062	0.069

Time (hrs)	13	14	15	16	17	18
Proportion of total rainfall	0.07	0.064	0.06	0.058	0.052	0.049

Time (hrs)	19	20	21	22	23	24
Proportion of total rainfall	0.043	0.034	0.028	0.025	0.019	0.014

Step 5: Calculate the lag time, L_g (using Equation 19).

$$L_g = 5.145 \text{ A}^{-0.1174} \text{ L}^{0.2417} \text{ S}^{-0.7157}$$

= 5.145 x 546^{-0.1174} x 65.5^{0.2417} x 1.37^{-0.7157}
= 5.38 hrs

Step 6: Calculate the rainfall duration of standard UH, t_r (using Equation 8).

$$t_r = \frac{L_g}{5.5} = \frac{5.38}{5.5} = 0.98$$
 hrs

Step 7: Determine the required rainfall duration of the derived unit hydrograph, t_R (depending on rainfall temporal pattern and catchment response time).

 $t_R = 1 hr$ for a 1 hr UH (time interval used for a 24-hour storm)

This is set according to the rainfall temporal pattern. Normally $t_R \leq \frac{L_g}{5}$.

Step 8: Calculate the required catchment lag time (time difference between the centroid of excess rainfall hyetograph and unit hydrograph peak), t_{pR} (using **Equation 9**).

$$t_{pR} = L_g - \frac{t_r - t_R}{4} = 5.38 - \frac{(0.98 - 1)}{4} = 5.39 \text{ hr}$$

Step 9: Calculate the peak discharge per unit catchment area of the standard UH, q_p using **Equation 10**.

$$q_p = \frac{C C_p}{L_g} = \frac{0.275 \times 0.54}{5.38} = 0.028 \text{ m}^3/\text{s/km}^2/\text{mm}$$

Step 10: Calculate the peak discharge per unit of catchment area of the required UH, q_{pR} using **Equation 11**.

$$q_{pR} = \frac{C C_p}{t_{pR}} = \frac{0.275 \times 0.54}{5.39} = 0.028 \text{ m}^3/\text{s/km}^2/\text{mm}$$

Step 11: Calculate the catchment peak discharge of UH, $Q_{\rm p}.$

 $Q_p = q_{pR} \, x \, A = 0.028 \, x \, 546 = 15.29 \, m^3/s/mm$

Step 12: Calculate the time base of UH, t_b using Equation 12.

$$t_{\rm b} = \frac{0.556}{q_{\rm pR}} = \frac{0.556}{0.028} = 19.86 \,\rm hr$$

Step 13: Calculate the time to peak of UH, T_p using $\mbox{Equation 13}.$

$$T_p = t_{pR} + \frac{t_R}{2} = 5.39 + \frac{1}{2} = 5.89 \text{ hr}$$

Step 14: Calculate the number of intervals in t_b , assuming triangular UH.

 $N3B = \frac{t_b}{t_R} = \frac{19.86}{1} = 19.86 \ (\approx 20)$ Round to integer for ease of calculation

Step 15: Calculate the number of intervals in T_p .

 $N3A = \frac{T_p}{t_R} = \frac{5.89}{1} = 5.89 \ (\approx 6) \qquad \text{Round to integer for ease of calculation}$

Step 16: Calculate and check the volume of UH runoff.

Synthetic triangular UH:

Volume =
$$\frac{\frac{1}{2} x t_b x Q_p}{A} = \frac{\frac{1}{2} x 1 x 20 x 15.29 x 3600 x 1000}{546 x 1000 x 1000} = 1.01 \text{ mm}$$

Revised
$$Q_p = \frac{Q_p}{Volume} = \frac{15.29}{1.01} = 15.1 \text{ m}^3/\text{s}$$

Re-calculate the volume using the revised \boldsymbol{Q}_p :

Volume =
$$\frac{\frac{1}{2} x t_b x Q_p}{A} = \frac{\frac{1}{2} x 1 x 20 x 15.1 x 3600 x 1000}{546 x 1000 x 1000} = 1 \text{ mm OK}$$

Adjusted UH is plotted as shown below:

Step 17: Calculate the UH ordinates using similar triangle.

Time interval	Discharge (m ³ /s)
1 (1 hr)	2.53
2 (2 hr)	5.06
3 (3 hr)	7.58
•	
•	
19 (19 hr)	1.08

Step 18: Determine the catchment rainfall.

Design rainfall for 24-hour duration = 296 mm

ARF = 0.92

Catchment rainfall = 0.92 x 296 = 272 mm

Step 19: Determine the direct runoff (using Equation 4).

Direct runoff, Q = $\frac{P^2}{(P+300)} = \frac{272^2}{(272+300)} = 129.3 \text{ mm}$

Time (hrs)	1	2	3	4	5	6
Runoff (mm)	1.29	2.20	3.23	3.23	3.88	4.53
Time (hrs)	7	8	9	10	11	12
Runoff (mm)	5.95	6.47	7.50	7.50	8.02	8.92
Time (hrs)	13	14	15	16	17	18
Runoff (mm)	9.05	8.28	7.76	7.50	6.72	6.34
Time (hrs)	19	20	21	22	23	24

Distribution of direct runoff based on proportion of total rainfall.

Time (hrs)	19	20	21	22	23	24
Runoff (mm)	5.56	4.40	3.62	3.23	2.46	1.81

Step 20: Calculate the baseflow (using Equation 22 for Sabah).

 $Q_B = 0.0783 \ A^{0.8653} = 0.0783 \ x \ 546^{0.8653} = 18.3 \ m^3/s$

Step 21: Perform the UH Convolution.

Refer to Table B.

Interval No	Total runoff					
0	18.3					
1	21.6					
2	30.4					
3	47.4					
4	72.6					
5	107.6					
•	•					
•						
•	•					
38	61.9					
39	45.1					
40	33.0					
41	24.9					
42	20.3					

Step 22: Calculate and plot the total runoff hydrograph.

Explanation of **Table B** is similar to Example 1 above.

Table B: UH Convolution for Example 2

	Α	В	С	D	Е	F	G	Н	Ι	J	К	L	Μ	Ν	0	Р	Q	R	S	Т			AB	AC	AD	AE	AF	AG AH
1	UH	ordinates				Dein			1 1							la.		-: f II			- 6 4 - 4 - 1 - 4 -							
	Time Interval	Discharge (m ² /s)				Rair		Bogion		Intonial	1	2	2	4	E	in c		aintaii, exp	ressed as	proportion 10	of total sto	rm raintai	10	10	20	21	22	22 24
4	0	0	1			296	0.92	5		24	0.01	0.017	0.025	0.025	0.03	0.035	0.046	0.05	0.058	0.058		•	0.049	0.043	0.034	0.028	0.025	0.019 0.014
5	1	2.53				Catchme	nt rainfall			27	0.01	0.017	0.025	0.025	0.05	Inci	emental rai	nfall excess	0.050	0.050			0.045	0.045	0.034	0.020	0.025	0.015 0.014
						Catchment	Total																					
6	2	5.06				rainfall	Excess RF	RE1	RE2	RE3	RE4	RE5	RE6	RE7	RE8	RE9	RE10	RE11	RE12	RE13	•		RE21	RE22	RE23	RE24		
7	3	7.58]			272	129.3	1.29	2.20	3.23	3.23	3.88	4.53	5.95	6.47	7.50	7.50	8.02	8.92	9.05			3.62	3.23	2.46	1.81		
8	4	10.11		-									Sum of di	rect runoff			19636.59		m³/s.hr									
9	5	12.64	Q _B	_									Direct run	off volume			129.47		mm									
10	6	15.17	18.3								Rair	nfall excess	for time in	terval												1		
11	7	14.08	Time Interval	Discharge (m ³ /s)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16			24	Direct runoff	Total runoff	-		
12	8	13.00	0	2.52	1.29	2.20	3.23	3.23	3.88	4.53	5.95	6.47	7.50	7.50	8.02	8.92	9.05	8.28	7.76	7.50			1.81	0.00	18.3	-		
13	9	11.92	2	2.53	3.27	5.56															•	•		3.27	21.6	-		
14	10	0.05	2	5.00	0.54	5.50	9.17																	29.10	30.4	1		
16	12	8.67	3	10 11	13.08	16.67	16 35	8 17														•		54.27	72.6	-		
17	13	7.58	5	12.64	16.35	22.23	24.52	16.35	9.81													•		89.26	107.6	1		
18	14	6.50	6	15.17	19.62	27.79	32.69	24.52	19.62	11.44														135.68	154.0			
19	15	5.42	7	14.08	18.22	33.35	40.87	32.69	29.43	22.89	15.04													192.48	210.8	1		
20	16	4.33	8	13.00	16.81	30.97	49.04	40.87	39.23	34.33	30.08	16.35												257.68	276.0	1		
21	17	3.25	9	11.92	15.41	28.58	45.54	49.04	49.04	45.77	45.12	32.69	18.96											330.17	348.5	1		
22	18	2.17	10	10.83	14.01	26.20	42.04	45.54	58.85	57.22	60.16	49.04	37.93	18.96										409.95	428.3			
23	19	1.08	11	9.75	12.61	23.82	38.53	42.04	54.65	68.66	75.20	65.39	56.89	37.93	20.27									495.98	514.3			
24			12	8.67	11.21	21.44	35.03	38.53	50.44	63.76	90.24	81.74	75.85	56.89	40.54	22.56								588.23	606.5			
25			13	7.58	9.81	19.06	31.53	35.03	46.24	58.85	83.79	98.08	94.82	75.85	60.81	45.12	22.89							681.88	700.2			
26			14	6.50	8.41	16.67	28.02	31.53	42.04	53.95	77.35	91.08	113.78	94.82	81.08	67.68	45.77	20.92	10.00					773.10	791.4	-		
27			15	5.42	7.01	14.29	24.52	28.02	37.83	49.04	70.90	84.07	105.65	113.78	101.35	90.24	68.66	41.85	19.62	10.00				856.84	875.1	-		
28			16	4.33	5.60	11.91	21.02	24.52	33.63	44.14	59.01	77.07	97.52	105.65	121.63	112.80	91.55	62.77	39.23	18.96		•		932.46	950.8	-		
29			17	3.25	4.20	9.55	17.52	17.52	29.45	24.22	58.01	62.05	09.40	97.52	104.25	135.50	127.22	05.70	70.05	57.95				1042 59	1014.4	1		
30			10	2.17	2.80	1.15	10.51	1/.52	23.22	29/13	/5 12	56.05	73.1/	81.27	95 56	116.02	137.52	125 55	98.08	75.85				1043.38	1001.5	-		
32			20	1.00	1.40	2.38	7.01	10.51	16.81	24.52	38.67	49.04	65.02	73.14	86.88	106.35	117.70	116.58	117.70	94.82				1072.33	1100.7			
33			21			2.00	3.50	7.01	12.61	19.62	32.23	42.04	56.89	65.02	78.19	96.68	107.89	107.61	109.29	113.78				1075.01	1093.3	1		
34			22					3.50	8.41	14.71	25.78	35.03	48.76	56.89	69.50	87.02	98.08	98.65	100.89	105.65				1051.05	1069.4	1		
35			23						4.20	9.81	19.34	28.02	40.64	48.76	60.81	77.35	88.28	89.68	92.48	97.52				1012.52	1030.8	1		
36			24							4.90	12.89	21.02	32.51	40.64	52.13	67.68	78.47	80.71	84.07	89.40			4.58	959.18	977.5]		
37			25								6.45	14.01	24.38	32.51	43.44	58.01	68.66	71.74	75.67	81.27			9.15	889.96	908.3			
38			26									7.01	16.25	24.38	34.75	48.34	58.85	62.77	67.26	73.14			13.73	809.76	828.1			
39			27										8.13	16.25	26.06	38.67	49.04	53.81	58.85	65.02			18.31	722.93	741.2			
40			28											8.13	17.38	29.01	39.23	44.84	50.44	56.89			22.89	631.43	649.7	-		
41			29												8.69	19.34	29.43	35.87	42.04	48.76			27.46	539.19	557.5	-		
42			30													9.67	19.62	26.90	33.63	40.64			25.50	448.53	466.8	-		
43			31														9.81	17.94	25.22	32.51	•	•	23.54	300.50	384.9	-		
44			32															0.97	9.41	16.25		•	19.62	294.25	250.1	-		
46			34																0.41	8.13		•	17.66	178.23	196.5	1		
47			35																	0.15			15.69	133.12	150.5	1		
48			36																				13.73	96.12	114.4	1		
49			37					1															11.77	66.42	84.7	1		
50			38																				9.81	43.58	61.9	1		
51			39																				7.85	26.76	45.1]		
52			40																				5.89	14.71	33.0			
53			41																				3.92	6.59	24.9]		

Solution using computer program:

Area, A: 546 km²

River Length, L: 65.5 km

Slope: 1.37%

Rainfall Temporal Region: 5

Peaking Coefficient, Cp: 0.54 from Table 3

Calculate lag time

$$L_{g} = 5.145 \text{ A}^{-0.1174} \text{ L}^{0.2417} \text{ S}^{-0.7157}$$

= 5.145 x 546^{-0.1174} x 65.5 ^{0.2417} x 1.37^{-0.7157}
= 5.38 hrs

Rainfall: 50 years ARI

Durations (hrs)	12	24	48
Rainfall (mm)	247	296	353
ARF	0.87	0.92	0.92

Peak discharge computed using the computer program:

Rainfall Durations (hrs)	12	24	48
Peak Discharge (m ³ /s)	1,054	1,103	943

Derived hydrographs: The critical storm is 24 hours

Example 3: Flood Hydrograph for Sarawak

Problem:

It is proposed to construct a small weir across Sg Sekerang located in Entaban. Estimate the 20-year design flood hydrograph using Snyder UH method. Calculate the total hydrograph for a 24-hour storm.

Solution using Manual Calculation:

Step 1: Determine the catchment area, main stream length and weighted stream slope from the topographical map, manually or using the GIS tools.

Catchment Area, A: 715 km²

River length, L: 114 km

Weighted slope of main stream, S: 0.5 %

Peaking Coefficient, Cp: 0.64 from Table 3

Step 2: Obtain the design rainfall for the specified return period using HP 26 (2018). Design rainfall of 20-year ARI (24 hours) is 207 mm.

Step 3: Interpolate the ARF from **Table 1**.

The ARF value is 0.91.

Step 4: Determine the rainfall temporal pattern region from **Figure 2** for Sarawak. Rainfall temporal pattern for Region 7:

Time (hrs)	1	2	3	4	5	6
Proportion of total rainfall	0.014	0.025	0.029	0.033	0.035	0.036

Time (hrs)	7	8	9	10	11	12
Proportion of total rainfall	0.037	0.039	0.04	0.042	0.05	0.081

Time (hrs)	13	14	15	16	17	18
Proportion of total rainfall	0.112	0.072	0.05	0.042	0.04	0.038

Time (hrs)	19	20	21	22	23	24
Proportion of total rainfall	0.036	0.035	0.034	0.032	0.028	0.022

Step 5: Calculate the lag time, L_g (using Equation 20).

$$L_g = 2.701 \text{ A}^{-0.2954} \text{ L}^{0.6795} \text{ S}^{-0.3737}$$

= 2.701 x 715^{-0.2954} x 114^{0.6795} x 0.5^{-0.3737}
= 12.55 hrs

Step 6: Calculate the rainfall duration of standard UH, t_r (using Equation 8).

$$t_r = \frac{L_g}{5.5} = \frac{12.55}{5.5} = 2.28 \text{ hrs}$$

Step 7: Determine the required rainfall of the derived unit hydrograph, t_R (depending on rainfall temporal pattern and catchment response time).

 $t_R = 1 hr$ for a 1 hr UH (time interval used for a 24-hour storm)

This is set according to the rainfall temporal pattern. Normally $t_R \leq \frac{L_g}{5}$.

Step 8: Calculate the required catchment lag time (time difference between the centroid of excess rainfall hyetograph and unit hydrograph peak), t_{pR} (using **Equation 9**).

$$t_{pR} = L_g - \frac{t_r - t_R}{4} = 12.55 - \frac{(2.28 - 1)}{4} = 12.23 hr$$

Step 9: Calculate the peak discharge per unit catchment area of the standard UH, $q_{\rm p}$ using **Equation 10**.

$$q_p = \frac{C C_p}{L_g} = \frac{0.275 \times 0.64}{12.55} = 0.014 \text{ m}^3/\text{s/km}^2/\text{mm}$$

Step 10: Calculate the peak discharge per unit of catchment area of the required UH, q_{pR} using **Equation 11**.

$$q_{pR} = \frac{C C_p}{t_{pR}} = \frac{0.275 \times 0.64}{12.23} = 0.0144 \text{ m}^3/\text{s/km}^2/\text{mm}$$

Step 11: Calculate the catchment peak discharge of UH, $Q_{\rm p}.$

 $Q_p = q_{pR} \, x \, A = 0.0144 \, x \, 715 = 10.3 \, m^3/s/mm$

Step 12: Calculate the time base of UH, t_b using **Equation 12**.

$$t_{\rm b} = \frac{0.556}{q_{\rm pR}} = \frac{0.556}{0.0144} = 38.61 \,\rm hr$$

Step 13: Calculate the time to peak of UH, T_p using $\mbox{Equation 13}.$

$$T_p = t_{pR} + \frac{t_R}{2} = 12.23 + \frac{1}{2} = 12.73 \text{ hr}$$

Step 14: Calculate the number of intervals in t_b , assuming triangular UH.

 $N3B = \frac{t_b}{t_R} = \frac{38.61}{1} = 38.61 \ (\approx 39) \qquad \text{Round to integer for ease of calculation}$

Step 15: Calculate the number of intervals in T_p .

 $N3A = \frac{T_p}{t_R} = \frac{12.73}{1} = 12.73 \ (\approx 13) \qquad \text{Round to integer for ease of calculation}$

Step 16: Calculate and check the volume of UH runoff.

Synthetic triangular UH:

Volume =
$$\frac{\frac{1}{2} x t_b x Q_p}{A} = \frac{\frac{1}{2} x 1 x 39 x 10.3 x 3600 x 1000}{715 x 1000 x 1000} = 1.01 \text{ mm}$$

Revised
$$Q_p = \frac{Q_p}{Volume} = \frac{10.3}{1.01} = 10.2 \text{ m}^3/\text{s}$$

Re-calculate the volume using the revised $\boldsymbol{Q}_{\mathrm{p}}$:

Volume =
$$\frac{\frac{1}{2} x t_b x Q_p}{A} = \frac{\frac{1}{2} x 1 x 39 x 10.2 x 3600 x 1000}{715 x 1000 x 1000} = 1 \text{ mm OK}$$

Adjusted UH is plotted as shown below:

Step 17: Calculate the UH ordinates using similar triangle.

Time interval	Discharge (m ³ /s)
1 (1 hr)	0.78
2 (2 hr)	1.57
3 (3 hr)	2.35
37 (37 hr)	0.78
38 (38 hr)	0.39

Step 18: Determine the catchment rainfall.

Design rainfall for 24-hour duration = 207 mm

ARF = 0.91

Catchment rainfall = 0.91 x 207 = 188 mm

Step 19: Determine the direct runoff (using Equation 6).

Direct runoff, Q = $\frac{P^2}{(P+160)} = \frac{188^2}{(188+160)} = 101.6 \text{ mm}$

Time (hrs)	1	2	3	4	5	6
Runoff (mm)	1.42	2.54	2.95	3.35	3.56	3.66
Time (hrs)	7	8	9	10	11	12
Runoff (mm)	3.76	3.96	4.06	4.27	5.08	8.23
Time (hrs)	13	14	15	16	17	18
Runoff (mm)	11.38	7.32	5.08	4.27	4.06	3.86

Distribution of direct runoff based on proportion of total rainfall.

Time (hrs)	19	20	21	22	23	24
Runoff (mm)	3.66	3.56	3.45	3.25	2.84	2.24

Step 20: Calculate the baseflow (using Equation 23 for Sarawak).

 $Q_B = 0.0111 \ A^{1.1682} = 0.0111 \ x \ 715^{1.1682} = 23.9 \ m^3/s$

Step 21: Perform the UH Convolution.

Refer to Table C.

Step 22: Calculate and plot the total runoff hydrograph.

Interval No	Total runoff
0	23.9
1	25.01
2	28.11
3	33.53
4	41.57
5	52.42
•	
57	40.67
58	34.66
59	30.03
60	26.76
61	24.77

Explanation of **Table C** is similar to Example 1 above.

Table C: UH Convolution for Example 3

		A	В	С	D	E	F	G	н	I	J	К	L	м	N	0	Р	Q	R	S	т			AB	AC	AD	AE	AF	AG AH
V integra <	1	UH	ordinates]						_																			
1 0	2	Time Interval	Discharge (m ³ /s)]			Rair	nfall data input	t									Increment	tal rainfall ,	expressed a	s proportion	of total sto	orm rainfall	1	1				
1 1	3	-	-	1			Р	ARF	Region	-	Interval	1	2	3	4	5	6	7	8	9	10			18	19	20	21	22	23 24
1 1	4	0	0	-			207	0.91	7		24	0.014	0.025	0.029	0.033	0.035	0.036	0.037	0.039	0.04	0.042			0.038	0.036	0.035	0.034	0.032	0.028 0.022
4 5 5 5 6 </td <td>5</td> <td>1</td> <td>0.78</td> <td>-</td> <td></td> <td></td> <td>Catchmont</td> <td>nt rainfall</td> <td></td> <td>1</td> <td></td> <td> </td> <td>1</td> <td>1</td> <td></td> <td></td> <td> </td> <td>Increment</td> <td>ai raintali ei</td> <td>cess</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	5	1	0.78	-			Catchmont	nt rainfall		1			1	1				Increment	ai raintali ei	cess					1				
1 1	6	2	1.57				rainfall	RE	RE1	RE2	RE3	RE4	RE5	RE6	RE7	RE8	RE9	RE10	RE11	RE12	RE13			RE21	RE22	RE23	RE24		
n n	7	3	2.35				188	101.6	1.42	2.54	2.95	3.35	3.56	3.66	3.76	3.96	4.06	4.27	5.08	8.23	11.38			3.45	3.25	2.84	2.24		
1 1	8	4	3.14	1										Sum of d	irect runof	f		20250.14		m ³ /s.hr		-	-						
1 1 0	9	5	3.92	QB]									Direct rur	noff volum	e	1	101.96	1	mm									
11 7 548 10 10 2 1 1 2 1 1 1 2 1 <th1< th=""> 1<td>10</td><td>6</td><td>4.71</td><td>23.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ra</td><td>infall exce</td><td>ss for time</td><td>interval</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></th1<>	10	6	4.71	23.9								Ra	infall exce	ss for time	interval												_		
1 0	11	7	5.49	Time Interval	Discharge (m ³ /s)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16			24	Direct runoff	Total runoff	1		
1 1	12	8	6.28	0		1.42	2.54	2.95	3.35	3.56	3.66	3.76	3.96	4.06	4.27	5.08	8.23	11.38	7.32	5.08	4.27			2.24	0	23.9	4		
10 100	13	9	7.06	1	0.78	1.11	-																		1.11	25.0	4		
0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0	14	10	7.85	2	1.57	2.23	1.98	2.20																	4.21	28.1	-		
10 100 100	15	11	0.03	3	2.35	3.34	5.99	2.30	2.61	-															9.03	33.5	+		
19 19 19.4 19.	17	13	10.20	5	3.14	5.57	7.98	6.93	5.26	2 78															28.52	52.4	1		
15 9.40 7.0 7.80 7.80 7.80 7.0<	18	13	9.81	6	4.71	6.69	9.96	9.26	7.87	5.59	2.85														42.22	66.1	1		
1 .	19	15	9.42	7	5.49	7.80	11.96	11.56	10.52	8.37	5.75	2.93													58.89	82.8	1		
Image: Section of the sectio									· .	· .																	1		
i i																											1		
10 14 150 2.0 1.00<																													
31 35 1.57 27 4.71 6.69 12.95 13.05 13.07 27.8 23.8 23.9 23.8 23.9 23.8 23.9 23.8 23.9 23.8 23.9 23.8 23.9 23.8 23.9 23.8 23.9 23	38	34	1.96	26	5.10	7.24	13.94	17.35	21.04	23.75	25.84	28.01	31.09	33.45	36.85	45.82	77.53	111.64	74.66	47.85	36.85			5.26	777.72	801.6	1		
40 56 1.18 28 4.42 6.13 1.18<	39	35	1.57	27	4.71	6.69	12.95	16.20	19.70	22.36	24.41	26.55	29.50	31.87	35.18	43.84	74.23	107.20	71.81	51.82	40.22			7.03	780.48	804.4	-		
10 17 10.8 39 13.9 3.01 10.9<	40	36	1.18	28	4.32	6.13	11.96	15.05	18.39	20.93	22.98	25.08	27.96	30.25	33.52	41.86	71.02	102.65	68.95	49.83	43.55			8.78	777.20	801.1	-		
10 8 0.97 3.0 3.00<	41	37	0.78	29	3.92	5.57	10.97	13.89	17.09	19.54	21.52	23.61	26.41	28.66	31.81	39.88	67.82	98.21	66.03	47.85	41.89			10.55	768.97	792.9	-		
1 3 3 3 1	42		0.39	30	3.53	5.01	9.96	12.74	15.78	16.16	20.09	22.11	24.87	27.08	30.15	37.85	64.61	93.77	60.22	45.82	29.52		•	12.30	755.96	779.9	-		
16 33 233 234 6.99 2.46 118 1052 1257 1250 1502 1257 1251 1502 1257 1251 1502 1257 1251 1502 1257 1251 1502 1257 1251 1502 1257 1251 1502 1257 1251 1512 1251 64.18 1251 1251 64.18 1251 1251 1251 1251 1251 1251 1251 1251 1251 1251 1251 1251 1251 1251 1251 1251 1251 <td>45 44</td> <td></td> <td></td> <td>31</td> <td>3.14</td> <td>4.40</td> <td>7.98</td> <td>10.41</td> <td>14.47</td> <td>15.38</td> <td>17.24</td> <td>19.18</td> <td>25.20</td> <td>23.50</td> <td>26.40</td> <td>33.88</td> <td>58 10</td> <td>84.78</td> <td>57.46</td> <td>45.64</td> <td>36.85</td> <td></td> <td>•</td> <td>14.07</td> <td>716.43</td> <td>762.5</td> <td>-</td> <td></td> <td></td>	45 44			31	3.14	4.40	7.98	10.41	14.47	15.38	17.24	19.18	25.20	23.50	26.40	33.88	58 10	84.78	57.46	45.64	36.85		•	14.07	716.43	762.5	-		
46 196 2.78 5.77 5.11 10.27 1.43 10.27 1.43 10.27 1.43 10.27 1.43 10.27 10.37 2.20 10.47 10.37 10.38 10.47 10.37 2.20 10.47 10.37 10.48 10.37 10.47 10.37 10.48 10.37 10.47 10.37 10.48 10.37 10.48 10.37 10.38 10.37 10.48 10.38	45			33	2.75	3.34	6.99	9.26	11.83	13.96	15.81	17.71	20.20	22.29	25.11	31.90	54.89	80.34	54.53	39.88	35.18			17.58	690.38	714.3	1		
17 127 4.88 6.99 9.21 118 12.12 17.11 17.12 17.2 17.8 48.8 7.47 <	46			34	1.96	2.78	5.97	8.11	10.52	12.57	14.35	16.24	18.65	20.71	23.44	29.87	51.68	75.90	51.68	37.85	33.52			19.33	660.22	684.1	1		
48 1.80 1.80 3.70 7.87 7.97 1.10 1.30 1.30 1.50 1	47			35	1.57	2.23	4.98	6.93	9.21	11.18	12.92	14.74	17.11	19.12	21.78	27.89	48.39	71.47	48.82	35.86	31.81			21.10	626.27	650.2	1		
19 0.78 1.11 0.76 0.75 0	48			36	1.18	1.68	3.99	5.78	7.87	9.79	11.49	13.27	15.52	17.54	20.11	25.91	45.18	66.91	45.97	33.88	30.15			22.85	588.92	612.8	1		
50 38 0.99 0.55 1.88 3.8 1.24 1.24 1.25 3.70 1.33 2.80 0.9 0.907 0.930 0.930 51 40 0 0.90 2.30 2.50 7.57 7.37 7.37 1.31 1.50 2.50 4.61 3.48 1.08 1.50 1.50 1.50 3.50 1.50 3.50 1.50	49			37	0.78	1.11	3.00	4.63	6.57	8.37	10.07	11.81	13.98	15.92	18.45	23.93	41.97	62.48	43.04	31.90	28.48			21.97	549.00	572.9]		
39 0.99 2.0 3.95 5.9 7.17 8.84 10.87 15.7 15.07 19.1 35.5 53.60 37.3 7.87 53.4 11.17 13.55 12.17 13.4 17.37 13.1 11.11 11.14 17.35 23.14 14.14 17.35 23.14 14.14 17.35 23.14 14.14 17.35 23.14 14.14 17.35 23.26 44.16 14.44 14.35 14.35 14.37 14.35 <	50			38	0.39	0.55	1.98	3.48	5.26	6.98	8.60	10.34	12.43	14.33	16.74	21.95	38.76	58.04	40.19	29.87	26.82			21.10	509.07	533.0	1		
52 40 10 11 2.61 4.20 5.75 7.37 9.31 11.17 13.41 17.3 32.26 49.16 34.26 2.93 2.1.4 . . 1.846 39.33 42.97 453.6 53 41 1 1.77 1.74 1.58 20.55 44.61 31.62 23.8 21.8 . . 1.846 39.33 41.52 54 42 1 1.77 1.58 2.57 7.8 7.6 9.56 10.03 13.37 25.86 21.58 21.51 1.6 1.58 35.10 37.0 9.64 1.83 1.94 1.84.5 1.50 35.89 39.34 31.30 22.86 1.53 1.54 1.61 1.56 31.30 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.54 1.51 2.56 1.51 2.56 1.51 2.56 1.51 2.56 1.51 2.56 31.30 2.29 1.31 1.51 1.54 1.51 2.56 2.56 2.56 2.56 2.56	51			39			0.99	2.30	3.95	5.59	7.17	8.84	10.89	12.75	15.07	19.91	35.55	53.60	37.33	27.89	25.11			20.20	469.12	493.0	4		
33 41 1 1.31 2.78 4.32 5.90 7.60 9.54 1.74 1.59 29.05 44.01 31.62 2.193 2.1.71 . 1.84 91.33 415.2 55 43 - - 1.58 55.10 37.20 37.9 57.8 1.51 27.8 35.10 37.80 56 44 - - 1.54 2.93 4.67 6.70 9.56 13.01 22.58 1.59 1.54 . 1.58 35.10 37.80 56 44 - - 1.54 2.93 1.57 5.70 1.57 1.57 1.51 1.58 35.10 37.80 57 45 - - 1.54 2.93 1.57 5.71 1.57 1.51 1.57 1.57 1.57 1.57 1.51 23.28 1.53 1.57 1.57 1.51 1.53 1.53 1.57 1.51 1.53 1.53 1.51 1.53 1.53 1.57 1.51 1.53 1.53 1.57 1.51	52			40				1.15	2.61	4.20	5.75	7.37	9.31	11.17	13.41	17.93	32.26	49.16	34.48	25.91	23.44			19.33	429.74	453.6	4		
142 1.39 2.50 4.44 0.22 7.50 10.30 2.5.61 41.17 2.0.60 2.1.33 2.1.31 . . . 1.55 53.40 34.00 55 44 1 1.40 1.47 3.00 4.79 6.70 9.96 19.34 31.30 22.98 17.93 15.74 . . 1.58 22.86 37.75 44 1 1 1.47 3.00 4.79 6.70 9.96 19.34 31.30 22.98 17.93 15.74 . . 1.58 23.86 37.75.86 57 445 1 1 1 1 1.40 1.43 1.47 3.04 7.98 1.55 15.07 . 1.40 22.88 37.48 33.14 31.40 34.10 34.10 1.41 <	53			41					1.31	2.78	4.32	5.90	/./6	9.54	11.74	15.95	29.05	44.61	31.62	23.93	21.78			18.46	391.33	415.2	-		
133 143 1	54			42						1.39	2.85	4.44	0.22	6.27	0.05	11.04	25.84	40.17	28.09	21.95	10.11		•	17.58	354.10	378.0	-		
37 45 3 3 1.54 3.17 5.04 2.54 2.54 2.55 1.44 2.55 <th2.55< th=""> <th2.55< th=""> <th2.55< th=""> <th2.55< th=""></th2.55<></th2.55<></th2.55<></th2.55<>	56			43							1.45	1.7	3.09	1 79	6.70	9.96	19.3/	31.30	23.84	17.91	16.45		•	15.81	283.68	307.58	1		
58 46 6 6 1.58 3.33 5.99 12.92 22.30 17.20 13.97 13.41 . . 14.07 21.895 242.85 59 47 6 6 1.67 3.36 9.71 17.87 11.435 11.94 11.74 . . 13.17 188.94 22.84 60 48 6 6 6.42 13.43 11.44 1.74 . . 13.17 188.94 12.84 61 49 6 6.42 13.43 11.43 11.44 . . 11.42 13.366 157.56 62 50 6 6.42 13.84 8.64 7.98 8.37 . . 11.42 13.86 157.56 63 51 6 6 6 6 6 6 1.84 . . 1.47 . 1.43 11.42 13.36 157.56 64 51 61 61 61 61 61 61 61 61 61 61 <td>57</td> <td></td> <td></td> <td>45</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.7/</td> <td>1.54</td> <td>3.17</td> <td>5.04</td> <td>7.98</td> <td>16.13</td> <td>26.74</td> <td>20.13</td> <td>15.95</td> <td>15.07</td> <td></td> <td></td> <td>14.94</td> <td>250.58</td> <td>274.48</td> <td>1</td> <td></td> <td></td>	57			45								1.7/	1.54	3.17	5.04	7.98	16.13	26.74	20.13	15.95	15.07			14.94	250.58	274.48	1		
99 47 90 90 90 167 3.96 9.71 17.87 14.35 11.94 1.7.4 7. 13.17 18.894 212.84 60 48 90 100 1.03 1.03 1.03 1.03 10.30	58			46										1.58	3.33	5.99	12.92	22.30	17.20	13.97	13.41			14.07	218.95	242.85	1		
64 64 64 642 13.43 14.9 9.96 10.03 12.30 160.47 184.37 61 49 61 64 3.21 8.88 8.64 7.98 8.37 12.30 160.47 184.37 62 50 61 64 3.21 8.88 8.64 7.98 8.37 12.30 160.47 184.37 63 60 60 8.88 8.84 8.64 7.98 8.67 10.85 13.26 10.55 63 61 64 64 64 64 64 51 8.84 8.64 7.98 8.33 8.88 8.64 7.98 8.70 9.103 9.66 10.33 9.67 <th< td=""><td>59</td><td></td><td></td><td>47</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.67</td><td>3.96</td><td>9.71</td><td>17.87</td><td>14.35</td><td>11.94</td><td>11.74</td><td></td><td></td><td>13.17</td><td>188.94</td><td>212.84</td><td>1</td><td></td><td></td></th<>	59			47											1.67	3.96	9.71	17.87	14.35	11.94	11.74			13.17	188.94	212.84	1		
61 49 61 61 61 61 61 61 61 62 62 63 63 64 57.1 59.9 67.0 6.0 1.42 133.66 157.56 63 63 63 63 63 63 63 63.0	60			48												1.98	6.42	13.43	11.49	9.96	10.03			12.30	160.47	184.37	1		
62 50 6.0 6.0 6.0 6.4, 44 5.71 5.99 6.70 10.55 108.86 132.76 63 51 0 0 0 0 0 0 0 0 0 0.05 0.055 108.86 132.76 64 52 0 0 0 0 0 0 0 0 0.05 0.05 0.05 0.05 0.01 0.05 0.010 0.010 64 53 0 0 0 0 0 0 0 0 0 0.05 0.010 <th< td=""><td>61</td><td></td><td></td><td>49</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.21</td><td>8.88</td><td>8.64</td><td>7.98</td><td>8.37</td><td></td><td></td><td>11.42</td><td>133.66</td><td>157.56</td><td></td><td></td><td></td></th<>	61			49													3.21	8.88	8.64	7.98	8.37			11.42	133.66	157.56			
63 51 0 0 0 0 0 0 2.85 3.96 5.04 0 9.68 87.29 111.9 64 52 0 0 0 0 0 0 0 1.8 3.36 0. 0 8.78 70.21 94.16 65 53 0 0 0 0 0 0 0 0 0 9.68 8.78 70.21 94.16 66 54 0 0 0 0 0 0 0 0 0 0 0 0 9.68 8.78 70.21 94.16 66 54 0	62			50														4.44	5.71	5.99	6.70			10.55	108.86	132.76	1		
64 52 64 64 64 6 6 6 6 1.98 3.33 1.8 8.78 70.21 94.11 65 53 6 6 6 6 6 6 6 6 6 6 1.67 2. 8.78 70.21 94.14 66 54 6 6 6 6 6 6 6 6 6 7.91 5.00 7.93 67 55 6 <t< td=""><td>63</td><td></td><td></td><td>51</td><td></td><td></td><td></td><td></td><td></td><td>ļ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.85</td><td>3.96</td><td>5.04</td><td></td><td></td><td>9.68</td><td>87.29</td><td>111.19</td><td>4</td><td></td><td></td></t<>	63			51						ļ									2.85	3.96	5.04			9.68	87.29	111.19	4		
65 53 60 6 6 6 6 6 1.67 . 7.91 56.00 79.90 66 54 6 <td>64</td> <td></td> <td></td> <td>52</td> <td></td> <td>1.98</td> <td>3.33</td> <td></td> <td></td> <td>8.78</td> <td>70.21</td> <td>94.11</td> <td>4</td> <td></td> <td></td>	64			52																1.98	3.33			8.78	70.21	94.11	4		
54 67 55 61 61 61 7.03 43.74 67.64 67 55 61 61 33.18 57.08 68 56 61 61 33.18 57.08 69 57 61 61 33.18 57.08 69 57 61 61 61.6 33.18 57.08 70 58 61 61 61 61 61.7 40.7 71 59 61 61 61 61.6 <	65			53								-					-				1.67			7.91	56.00	79.90	-		
63 64 65 66 66 67 68 66 67 68 68 68 68 68 68 69 68 69 69 69 69 69 69 69 69 69 69 60 <th< td=""><td>67</td><td></td><td></td><td>54</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td>6.16</td><td>43./4</td><td>57.09</td><td>+</td><td></td><td></td></th<>	67			54									-	-								•	•	6.16	43./4	57.09	+		
69 57 60 6 60 6	68			56																			•	5.26	24 21	<u> </u>	1		
70 58 60 61 <th< td=""><td>69</td><td></td><td></td><td>57</td><td></td><td></td><td>-</td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· .</td><td>· ·</td><td>4.39</td><td>16.77</td><td>40.67</td><td>1</td><td></td><td></td></th<>	69			57			-															· .	· ·	4.39	16.77	40.67	1		
59 Image: Sector of the se	70			58																				3.52	10.76	34.66	1		
72 60 61 <th< td=""><td>71</td><td></td><td></td><td>59</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>·</td><td>2.64</td><td>6.13</td><td>30.03</td><td>]</td><td></td><td></td></th<>	71			59																			·	2.64	6.13	30.03]		
73 61 0.87 0.87 24.77	72			60																				1.75	2.86	26.76			
	73			61																				0.87	0.87	24.77			

Solution using Computer Program:

Area, A: 715 km²

River Length, L: 114 km

Slope: 0.5%

Rainfall Temporal Region: 7

Peaking Coefficient, Cp: 0.64 from Table 3

Calculate lag time

 $L_g = 2.701 \ A^{-0.2954} \ L^{0.6795} \ S^{-0.3737}$

 $= 2.701 \text{ x } 715^{-0.2954} \text{ x } 114^{0.6795} \text{ x } 0.5^{-0.3737}$

= 12.55 hrs

Rainfall: 20 years ARI

Durations (hrs)	12	24	48
Rainfall (mm)	183	207	231
ARF	0.86	0.91	0.91

Peak discharge computed using the computer program:

Rainfall Durations (hrs)	12	24	48
Peak Discharge (m ³ /s)	738	805	668

Derived hydrographs: The critical storm is 24 hours

5. Limitations of the Procedure

The Snyder method for this Procedure has been prepared mainly for the estimation of reasonable flood hydrographs where hydrological data for the catchment is sparse or non-existent. The current Procedure although has made significant improvements as compared to HP 11 (1976), there are still some limitations as follows:

- Assumption of T-year ARI flood is caused by the storm of T-year ARI
- Antecedent moisture of catchment was not considered in the derivation of rainfall-runoff relationship
- The rainfall-runoff coefficients showed large variability despite the large number of storm events evaluated. The adopted coefficients are slightly larger than the mean values to avoid under-estimation of the design flood, erring on the conservative side
- The areal variability of catchment rainfall during a storm causes the lag time of a catchment to vary from storm to storm. This makes the assumption of uniform areal distribution of design storm invalid.
- Some un-accounted for storage depression (e.g wetland, extremely flat catchment slopes) could lead to the overestimation of the peak discharge and the underestimation of the time to peak when using the equations. The equations developed are applicable for catchment with size used for the development of these equations.

It is recommended that the design flood estimation using this Procedure should:

- (i) Not be used on catchment less than 20 km² and larger than 2,000 km² for Peninsular Malaysia, less than 100 km² and larger than 3,000 km² for Sabah and less than 20 km² and larger than 2,500 km² for Sarawak.
- (ii) Not be used as a design basis when serious consequences such as major damage and loss of lives would result from the design flood being exceeded. In this case the PMP and PMF method should be used in preference to the design storm. The

temporal and areal pattern of the PMP should be determined from an analysis of extreme flood producing storms in the area. The PMP should be estimated from meteorological data using WMO or NAHRIM procedure.

6. List of References

- Azeze, M. (2004). Development of Synthetic Unit Hydrographs for Watersheds in The Upper Awash and Upper Tekeze Basins, Addis Ababa University.
- Carter, R. W. (1961). Magnitude and Frequency of Floods in Suburban Area, USGS Prof Paper 424-B.
- Chow, V. T., Maidment, D. R. and Mays, L. W. (1988). Applied Hydrology, McGraw Hill.
- Cordery, I. and Pilgrim, D. H. (1970). Design Hydrograph Methods of Flood Estimation for Small Rural Catchments, Civil Engineering Transactions Vol CE16, No. 1.
- 5. DID (1976). Design Flood Hydrograph Estimation for Rural Catchments in Peninsular Malaysia, Hydrological Procedure No. 11.
- DID (1982). Estimation of the Design Rainstorm in Peninsular Malaysia, Hydrological Procedure No. 1.
- DID (1983). Estimation of Design Rainstorm in Sabah and Sarawak, Hydrological Procedure No. 26.
- 8. DID (1986). Variation of Rainfall with Area in Peninsular Malaysia, Water Resources Publication No. 17.
- DID (1987). Magnitude and Frequency of Floods in Peninsular Malaysia, Hydrological Procedure No. 4.
- DID (2000). Manual Saliran Mesra Alam Malaysia- Urban Stormwater Management Manual for Malaysia.
- DID (2010). Estimation of Design Flood Hydrograph using Clark Method for Rural Catchments in Peninsular Malaysia, Hydrological Procedure No. 27.
- 12. DID (2010). Rational Method of Flood Estimation for Rural Catchments in Peninsular Malaysia, Hydrological Procedure No. 5.
- DID (2015). Estimation of the Design Rainstorm in Peninsular Malaysia, Hydrological Procedure No. 1.
- DID (2018). Estimation of Design Rainstorm in Sabah and Sarawak, Hydrological Procedure No. 26.

- Dripchak, M. M. and Hawkins, R. H. (1992). GETPQ Manual Watershed Resources Program, University of Arizona.
- Federal Aviation Administration (1970). Circular on Airport Drainage, Report a/a
 050-5320- B Washington D C.
- Halwatura, D. and Najim, M. (2013). Application of the HEC-HMS Model for Runoff Simulation in a Tropical Catchment, Environment Modelling and Software 155-162.
- Heiler T. D. and Tan H. T. (1974). Hydrological Design Return Periods, Provisional Hydrological Procedure 5.
- 19. Hoffmeister, G. and Weisman, R. (1977). Accuracy of Synthetic Hydrographs Derived from Representative Basins, Hydrological Sciences 6/1977.
- 20. Hosking, J. R. M. and Wallis, J. R. (1997). Regional Frequency Analysis, An Approach based on L-moments, Cambridge University Press.
- Hydrology Engineering Centre (2016). Hydrologic Modeling System Version 5.2.1 User Manual.
- 22. IEA (1987). Australian Rainfall and Runoff (ARR): A Guide to Flood Estimation.
- Jeong, S., Park, S. C. and Lee, J. H. (2001). A Study on the Parameter Estimation of Snyder-type Synthetic Unit Hydrograph Development in Kum river basin, Water Engineering Research Vol. 2 No. 4.
- 24. Kirpich, W. S. (1940). Time of Concentration of Small Agricultural Watersheds, Civil Engineering 10(6), 362.
- 25. McEnroe, B. M. and Zhao, H. (1999). Lag Time and Peak Coefficients for Rural Watersheds in Kansas, Kansas University.
- 26. NAHRIM (2009). Technical Guideline: Estimating Probable Maximum Precipitation for Design Floods in Malaysia.
- 27. Ponce V. M. (1989). Engineering Hydrology, Principles and Practice, Prentice Hall Englewood Cliff, New Jersey.
- Ramser, C. E. (1927). Runoff from Small Agricultural Areas, Journal of Agricultural Research Vol. 34 No. 9.
- 29. Snyder F. F. (1938). Synthetic Unit Hydrograph, Trans AGU 19.
- 30. Soil Conservation Services (1972). National Engineering Handbook.

- Thapa, G. and Wijesekera, N. (2017). Computation and Optimization of Snyder's Synthetic Unit Hydrograph Parameters, Water Conference.
- 32. U.S. Army Corps of Engineers (1994). Flood Runoff Analysis, Engineering and Design EM 1110- 2-1417.
- United States Bureau of Reclamation (1978). Design of Small Dams, Oxford and IBH Publishing Company.
- 34. U.S. Geological Survey (1996). Procedures for Estimating Unit Hydrographs for Large Floods at Ungauged Sites in Montana, Water Supply Paper 2420.
- 35. U.S. Weather Bureau (1957- 58). Rainfall Intensity-Frequency Regime Part I and Part II, Tech. Paper No. 29, USWB, Washington.
- 36. Viessman, W. J. and Lewis, G. L. (1995). Introduction to Hydrology, Prentice Hall Professional Technical Reference.
- 37. Zaitontz, C. (2014). Real Statistics in Excel, http://www.real-statistic.com.

APPENDICES

			Rainfall-Runoff Data		ata
No.	Station ID	Station Name	Event Date	Rainfall, P (mm)	Runoff, Q (mm)
			21 Sep 1970	223	142
	004004465		29 Dec 1970	485	337
1	0340211SF	Sg Sembrong di Bt 2 Air Hitam,	17 Feb 1973	100	57
	(1951425)	Tong Feng	14 May 1973	62	35
			6 Jan 1978	182	111
2	0320191SF		5 Mar 1974	28	8
2	(2528414)	Sg Segamat di Segamat	2 Dec 1978	121	40
			30 Mar 1979	47	9
			9 Aug 1980	102	42
			17 Dec 1980	93	32
	0430271SF		22 Dec 1984	130	68
3		Sg Sayong di Johor Tenggara	6 Mar 1988	128	44
	(1850402)		18 Nov 1988	122	46
			27 May 1993	65	12
			2 Feb 1996	82	28
			27 Dec 1998	120	36
			14 Dec 1972	52	17
			18 Nov 1974	29	6
4	0320381SF (2625412)	Sg Muar di Bt 57 Jln Gemas- Rompin	25 Sep 1976	36	12
4			7 Feb 1984	95	50
			14 Mar 1984	109	39
			9 Mar 1988	35	6
			17 Dec 1976	100	51
	055110165		8 Jan 1978	65	14
5	(3629403)	Sg Lepar di Jam Gelugor	14 Dec 1982	58	28
	(3023403)		24 Nov 1990	130	60
			15 Dec 1997	80	27
	050014155	Salonggor di Dt 42 Kluong	2 Dec 1977	192	110
6	(2237471)	Mersing	18 Dec 1983	94	52
	(2237471)		6 Dec 1987	201	86
			16 Jun 1975	27	6
			6 Sep 1977	52	13
	057012155		10 Oct 1977	58	21
7	(3930401)	Sg Kuantan di Bkt Kenau	12 Dec 1981	55	14
			29 Jan 1984	154	80
			14 Mar 1985	228	137
			2 Nov 1993	209	112

Table A.1: Data Used to Derive Rainfall-Runoff Relationship for Peninsular Malaysia

Table A.1: Data Us	ed to Derive Rainfall-Ru	noff Relationship for	r Peninsular Malav	sia

			Rainfall-Runoff Data				
No.	Station ID	Station Name	Event Date	Rainfall, P (mm)	Runoff, Q (mm)		
			2 Feb 1996	24	11		
			12 Nov 1997	64	28		
			20 Mar 1980	40	10		
	0320551SF		28 Nov 1980	70	17		
8	(2723401)	Sg kepis di Jam kayu Lama	12 Nov 1981	50	10		
			18 Sep 1999	45	20		
•	0600111SF	Sg Kemaman di Rantau	29 Nov 1989	58	23		
9	(4232452)	Panjang	8 Jan 1990	150	46		
			19 Dec 1986	82	34		
			8 Dec 1987	43	23		
	0551481SF		25 Jun 1994	40	20		
10		Sg Kecau di Kg Dusun	22 Dec 1995	36	18		
	(4320401)		20 Jul 1997	66	24		
			9 Nov 1998	50	16		
			23 Nov 1999	48	12		
			2 Jan 1979	285	129		
			5 Jan 1980	134	40		
			29 Dec 1980	97	47		
11	0500281SF (2235401)	Sg Kahang di Bt 26 Jln Kluang	25 Dec 1983	244	131		
11			8 Mar 1986	192	90		
			24 Jan 1987	168	86		
			28 Nov 1989	331	191		
			27 Dec 1998	170	72		
			13 Oct 1975	93	23		
			23 Feb 1977	60	30		
			17 Jan 1980	135	39		
12	0430121SF	Sa Johor di Bantau Banjana	22 Sep 1980	70	24		
12	(1737451)		10 Dec 1981	260	140		
			16 Dec 1982	297	249		
			23 Dec 1984	200	108		
			13 Jan 1990 152		56		
			30 Nov 1986	164	60		
			25 Jan 1987	90	27		
12	0600101SF	Sa Cherul di Ban Ho	7 Mar 1988	306	184		
51	(4131453)		11 Dec 1997	198	81		
			18 Dec 1997	92	39		
			29 Dec 1997	162	71		

Table A.1: Data Used	to Derive Rainfall-Runoff	Relationship fo	r Peninsular Mala	vsia
				,

	Station ID	Station Name	Rainfall-Runoff Data		
No.			Event Date	Rainfall, P (mm)	Runoff, Q (mm)
14	0670011SF (4930401)	Sg Berang di Menerong	25 Jan 1995	265	135
			12 Dec 1996	190	79
			18 Dec 1997	306	265
	0551041SF (3519426)	Sg Bentong di Jam K Marong	17 Feb 1974	50	21
15			7 Jan 1975	78	12
			5 Nov 1979	62	22
		Sg Bekok di Bt 77 Jln Yong Peng/Labis	17 Feb 1973	69	39
			14 Jun 1973	76	29
16			23 Nov 1975	69	23
			27 Dec 1976	127	60
	(2130422)		5 Jan 1979	234	128
	(2130422)		14 Oct 1980	89	30
			2 Mar 1984	114	52
			8 Mar 1986	196	91
			7 Dec 1987	142	43
	0180311SF (3913458)	Sg Sungkai di Sungkai	6 Oct 1985	134	38
			4 Dec 1996	167	40
			18 Jan 1997	16	6
17			13 Feb 1997	97	13
			22 Mar 1997	63	12
			29 Apr 1997	28	6
			11 Nov 1997	50	11
			27 Sep 1999	96	23
18	0180761SF (4511468)	Sg Raia di Keramat Pulai	28 May 1986	39	5
			7 Nov 1986	23	6
			4 Aug 1987	31	3
			7 Aug 1987	41	6
			5 May 1988	13	6
			1 Sep 1989	47	12
			12 Oct 1989	10	5
			12 Mar 1993	34	9
			10 Apr 1993	72	7
			6 Jun 1993	49	8
			5 Dec 1993	49	8

|--|

	Station ID	Station Name	Rainfall-Runoff Data		
No.			Event Date	Rainfall, P (mm)	Runoff, Q (mm)
19	0180131SF (4610466)	Sg Pari di JIn Silibin, Ipoh	21 May 1994	62	13
20	0240511SF	Sg Semenyih di Sg Rinching	7 Oct 1977	48	3
	(2918401)		10 Apr 1979	19	3
	0210311SF (3516422)	Sg Selangor di Rasa	5 Nov 1971	71	13
			3 Dec 1980	84	19
21			2 Oct 1988	64	16
21			2 Nov 1988	40	7
			17 Jan 1997	62	15
			11 Aug 1998	62	18
		Sg Plus di Kg Lintang	29 Oct 1976	64	8
22	0180361SF		30 Oct 1995	76	21
22	(4911445)		20 Dec 1999	42	10
			24 Mar 2000	100	11
	0010331SF (6602401)	Sg Pelarit di Wang Mu	23 Aug 1985	45	12
23			20 Sep 1989	39	12
			19 Sep 1995	45	19
24	0290131SF (2322413)	Sg Melaka di Pantai Belimbing	15 Feb 1981	52	14
25	0240441SF (3118445)	Sg Lui di Kg Lui	27 Nov 1974	81	10
25			18 Apr 1979	48	11
	0270081SF (2519421)	Sg Linggi di Sua Betong	7 Jul 1973	84	15
			12 Sep 1974	44	8
26			13 Nov 1974	97	21
26			18 Nov 1980	102	20
			1 Jan 1981	37	5
			13 Jul 1983	80	10
27	0240341SF (2816441)	Sg Langat di Dengkil	21 Sep 1970	60	8
			9 Nov 1973	66	9
			9 Mar 1974	83	11
			24 Nov 1974	44	6
			4 Jan 1977	52	13
28	0100041SF (5007421)	Sg Kurau di Pondok Tg	3 Sep 1979	162	57
			17 Sep 1995	118	49
			29 Oct 1995	263	130
Table A.1: Data U	sed to Derive Rain	fall-Runoff Relation	onship for Pen	insular Malavsia	
-------------------	--------------------	----------------------	----------------	------------------	

			Rainfall-Runoff Data		
No.	Station ID	Station Name	Event Date	Rainfall, P (mm)	Runoff, Q (mm)
	000007405		13 Sep 1972	85	19
29 0060071SF	Sg Kulim di Ara Kuda	27 Apr 1984	127	30	
	(5405421)		Station NameRaEvent DateRaKulim di Ara Kuda13 Sep 1972Kulim di Ara Kuda27 Apr 198427 Apr 198428 Nov 198718 Nov 198717 May 1986118 Sep 1997117 Sep 199513 Sep 199916 Oct 1985114 Nov 1987122 Sep 1989226 May 1993226 May 1993226 May 1993220 Nov 1970111 an 1971110 Oct 1976111 Oct 1979111 Oct 1979111 Oct 1979112 Jul 1983120 Nov 1990111 Oct 1979111 Oct 1979112 Jul 1983117 Nov 19961Durian Tunggal di Bt 11 Air sam16 Sep 1998Cenderiang di Bt 32 Jln bah31 Oct 198422 Nov 1984123 Jul 19821Bidor di Bidor Malayan Tin d14 Sep 198311 Apr 1984223 Jul 19821Bernam di Tg Malim14 Sep 198321 Nov 1992111 Jun 197713 May 197616 Feb 1985116 Apr 1985120 Noct 1991111 Aug 1987130 Oct 19911	119	29
			7 May 1986	105	16
20	0090141SF	Sa Karian di Salama	18 Sep 1987	81	18
30 (5206432)	sg kenan ui selama	17 Sep 1995	177	49	
			A di Weir G, Tg Tualang a di Weir G, Tg Tualang a di Chin Chin (1) Ct 1985 (14) Nov 1987 (22) Sep 1989 (26) May 1993 (20) Nov 1993 (20) Nov 1970 (1) Jan 1971 (10) Oct 1976 (11) Oct 1979	126	45
			6 Oct 1985	133	49
	010000105		14 Nov 1987	104	17
31	0180801SF (4310401)	Sg Kinta di Weir G, Tg Tualang	22 Sep 1989	241	85
	(4310401)		26 May 1993	111	20
			8 Nov 1993	93	15
			20 Nov 1970	104	16
		Sg Kesang di Chin Chin	1 Jan 1971	174	52
22	0310061SF		10 Oct 1976	147	49
52	(2224432)		11 Oct 1979	71	7
			12 Jul 1983	26	7
			17 Nov 1996	25	7
33	0290141SF (2322415)	Sg Durian Tunggal di Bt 11 Air Resam	16 Sep 1998	56	6
21	0180641SF	Sg Cenderiang di Bt 32 Jln	31 Oct 1984	90	10
54	(4212467)	Tapah	22 Nov 1984	59	11
	(4212467)		3 Jul 1982	123	30
25	0180861SF	Sg Bidor di Bidor Malayan Tin	14 Sep 1983	110	30
33	(4012401)	Bhd	11 Apr 1984	85	17
			2 Jun 1987	162	38
	010012155		5 May 1992	155	30
36	(3615412)	Sg Bernam di Tg Malim	21 Nov 1992	121	26
	(3013112)		11 Jun 1997	86	19
			1 Jan 1971	263	109
			3 May 1976	151	31
			6 Feb 1985	117	28
37	0210201SF	Sa Selangor di Bantau Panjang	16 Apr 1985	78	20
57	(3414421)		2 Dec 1985	52	17
			11 Feb 1987	61	8
			11 Aug 1987	103	19
			30 Oct 1991	231	95

			Rainfall-Runoff Data		nta
No.	Station ID	Station Name	Event Date	Rainfall, P (mm)	Runoff, Q (mm)
1	0850041WL	Sa Taway di Kubara	16 Apr 1985	32.3	7.2
T	(4278402)		1 May 1985	65.3	11.5
			28 Mar 1988	26.8	7.0
	070002414//		12 Jun 1988	63.0	4.0
2	(1474401)	Sg Kalabakan di Kalabakan	24 May 1989	33.9	11.9
(4474401)		1 Sep 1989	69.8	17.0	
			3 Dec 1993	28.4	13.3
2	0880011WL	Sa Kalumpana di Mostup Bridgo	30 Apr 1986	53.9	8.8
5	(4581401)	sg kalumpang ur wostyn Bridge	4 Mar 1988	82.0	38.0
4	0750041WL (4764402)	Sg Talangkai di Lotong	5 Feb 1999	111.0	31.0
			7 Jan 2000	27.3	9.6
-	1490031WL	Sg Mengalong di Sindumin	21 Mar 2001	76.5	11.0
5	(4955403)		27 Nov 2002	26.7	8.9
			2 Oct 2004	35.5	8.8
6	1040031WL (5074401)	Sg Kuamut di Ulu Kuamut	29 Apr 1985	154.6	33.2
7	1480021WL (5156401)	Sg Lakutan di Mesapol Quarry	3 Nov 2011	129.0	31.0
	1010021\\\/	Sg Segama di Limkabong	25 Nov 1988	39.0	19.0
8	(5181401)		2 Dec 1994	102.7	44.8
	(0101/01/		12 May 1996	44.5	21.4
9	1460121WL (5261402)	Sg Sook di Biah	27 Feb 2008	138.0	21.0
			7 May 1994	31.5	6.5
			5 Jun 1995	48.4	2.7
10	1460211WL	Sg Bajayo di Bandukan	24 Dec 1999	20.7	3.8
10	(5461401)		10 May 2000	11.5	4.4
			31 May 2002	22.9	4.8
			31 Mar 2005	24.0	1.9
			3 Nov 1997	18.8	5.2
	1460221\\//		20 Jul 1998	33.7	9.2
11	(5462402)	Sg Apin-Apin di Waterworks	4 Feb 2000	21.2	3.5
			6 Feb 2000	15.2	5.7
			12 Apr 2000	10.5	4.9
	146025114/		17 Feb 1999	96.4	18.7
12	(5668401)	Sg Kegibangan di Tampias P.H.	20 Mar 1999	98.2	15.9
			10 May 2005	120.0	20.0

 Table A.2: Data Used to Derive Rainfall-Runoff Relationship for Sabah

			Rainfall-Runoff Data		ita
No.	Station ID	Station Name	Event Date	Rainfall, P (mm)	Runoff, Q (mm)
			19 May 1985	72.0	7.0
		5 Jun 1985	48.5	8.0	
			3 Oct 1985	50.2	18.8
			12 Jun 1988	42.3	15.4
			11 Sep 1991	28.8	8.3
			11 Sep 1991	83.6	28.2
13	1400021WL (5760401)	Sg Papar di Kaiduan	9 Nov 1991	99.8	23.6
	(3700401)		20 Jun 1992	115.8	21.0
			20 Jun 1992	115.3	22.0
			7 Jul 1993	202.7	85.77
			22 Jun 1995	77.4	16.8
			18 Sep 1995	50.0	10.9
			15 Feb 1996	62.0	22.0
14	1400041WL (5760402)	Sg Papar di Kogopon	8 Sep 2013	132.0	47.0
		Sg Labuk di Tampias	6 Mar 1986	48.0	7.6
15	1160151WL		21 Feb 1989	84.0	22.0
15	(5768401)		20 Jan 1991	102.8	28.8
	(5768401)		5 Mar 1994	58.4	9.3
16	1390021WL	Sg Moyog di Penampang	23 Nov 1990	111.0	26.0
10	(5961401)		23 Sep 1993	141.0	43.0
			13 Dec 1987	93.7	16.6
			20 Feb 1988	173.0	43.0
			25 Jan 1989	36.0	11.7
			30 Sep 1989	52.9	12.6
17	1160031WL	Sa Tupaud di Basai	12 Jan 1993	127.0	20.0
1/	(6073401)		16 Jan 1993	115.0	34.0
			24 Dec 1993	575.0	382.0
			24 Oct 1998	84.0	36.0
			23 Dec 1999	255.0	144.0
			27 Jan 1992	139.0	56.0
10	1360041WL	Sa Tuaran di Dump House 1	10 Dec 1991	101.0	37.0
10	(6162403)		13 Mar 1994	101.0	38.6
	120001111		12 Dec 1987	129.0	61.0
19	1200011WL	Sg Sugut di Bukit Mondou	1 Mar 1989	92.7	14.3
	(01/2401)		6 Jun 1994	89.7	20.0

			Rainfall-Runoff Data		
No.	Station ID	Station Name	Event Date	Rainfall, P (mm)	Runoff, Q (mm)
			6 Nov 1989	107.0	18.0
20	1340021WL	Sa Kadamaian di Tamu Darat	7 Jun 1992	65.6	14.8
20	(6264401)	Sg Kadamalan di Tamu Darat	14 Jul 1996	113.2	28.0
			27 May 1999	123.5	48.0
21	1340031WL (6364401)	Sg Wariu di Bridge No.2	26 Dec 1996	102.2	47.0
22	1280011WL	Sg Bongan di Timbang Batu Sabah	12 Nov 1987	79.5	26.0
22	(6468402)		31 Jul 1995	91.5	22.3
			7 Dec 1987	175.0	49.0
			15 Aug 1988	78.5	22.0
22	1260011WL	Sa Dongkoko di Kohon	7 Jan 1991	74.6	19.0
23	(6670401)	Sg Bengkoka di Kobon	11 Feb 1994	73.0	18.0
			22 Feb 1999	210.0	55.0
			2 Jan 2003	224.0	111.0

 Table A.2: Data Used to Derive Rainfall-Runoff Relationship for Sabah

		Station Name	Rainfall-Runoff Data		
No.	Station ID		Event Date	Rainfall, P (mm)	Runoff, Q (mm)
			3 Dec 1985	16.0	5.0
			28 Sep 1986	19.6	9.0
			23 Jan 1987	15.3	7.3
			11 Oct 1987	41.9	15.3
		L Sg Kayan di Krusen	16 Jan 1990	36.7	6.7
			1 Feb 1990	17.2	11.0
			22 Nov 1991	58.4	20.5
1	1790041WL		4 Mar 1995	65.8	33.2
1	(1004438)		30 Apr 1995	46.4	31.3
			3 Jan 1996	33.2	12.5
			2 Feb 1996	21.5	8.1
			3 Feb 2003	118.0	40.7
			29 Aug 2007	43.9	23.4
			8 Jun 2008	224.0	173.0
			9 Jan 2009	189.0	148.0
			18 Jun 2016	102.8	54.0

			Rainfall-Runoff Data		ta
No.	Station ID	Station Name	Event Date	Rainfall, P (mm)	Runoff, Q (mm)
			19 Aug 1998	70.0	16.9
			21 May 2000	46.7	7.9
			15 Feb 2001	100.2	57.9
			15 Feb 2001	113.6	51.5
			17 Sep 2001	95.0	22.4
			2 Oct 2001	107.0	22.6
2	2 1790051WL	Ca Kadun di Nau Marinanu	15 Jan 2003	113.9	37.1
2	(1005447)	sg kedup di New Meringgu	17 Jun 2005	30.7	10.8
			26 Jul 2005	27.2	13.6
			16 Aug 2005	40.9	16.6
			2 Oct 2005	220.3	95.8
			11 Jun 2006	21.5	8.7
			29 Jan 2007	49.9	22.5
			22 Nov 2012	69.4	12.1
3	1770061WL (1015401)	Sg Entebar di Entebar	22 Jan 2000	46.1	26.7
		Sg Ai di Lubok Antu	5 Nov 1978	48.9	10.7
			4 Dec 1978	22.2	12.9
			13 Feb 1979	64.7	25.0
			20 Jan 1980	20.5	12.2
	1770021\\//		3 Mar 1980	17.4	10.0
4	(1018401)		30 Mar 1980	68.1	12.0
	2 1790051WL (1005447) 3 1770061WL (1015401) 4 1770021WL (1018401) 5 1790031WL (1108401)		3 Apr 1980	24.4	10.3
			13 Aug 1980	40.7	16.4
			19 Nov 1980	48.6	11.2
			23 Oct 1997	60.5	12.3
			12 Jul 1998	20.5	14.1
			8 Oct 1988	42.7	28.1
			10 May 1989	37.6	9.8
			9 Jul 1989	22.6	15.8
	1790031WL	Sa Sabal Kruin di Sabal Kruin	8 Aug 1991	43.9	5.4
5	(1108401)	Se Sanai kinin ni Sanai kinin	1 Jul 1994	64.5	8.7
			28 Aug 1994	31.4	7.2
			1 Jul 1995	95.9	59.4
			18 Jul 1997	9.2	3.9
			13 Jun 1999	66.8	18.2

			Rainfall-Runoff Data		ita
No.	Station ID	Station Name	Event Dete	Rainfall, P	Runoff, Q
			Event Date	(mm)	(mm)
			7 Aug 1999	36.1	7.2
			08 Sep 1999	33.1	12.0
			19 Nov 1997	28.0	4.8
			22 Dec 1997	9.5	4.3
			29 Dec 1997	45.0	19.2
			3 Feb 1998	23.5	5.9
			3 Apr 1998	87.5	35.1
			10 Aug 1998	14.0	5.3
			2 Sep 1998	39.5	7.5
			27 Sep 1998	32.0	8.5
			27 Oct 1998	94.0	26.2
			29 Oct 1998	78.0	21.3
			16 Dec 1998	26.0	14.8
			27 Dec 1998	103.5	32.2
		/L Sg Sarawak Kanan di Pk Buan Bidi	4 Jan 1999	50.0	12.0
			25 Jan 1999	54.5	7.3
C	1810061WL		20 Jun 1999	80.0	22.5
0	(1301427)		9 Jul 1999	19.0	5.4
			14 Jul 1999	37.5	18.0
			21 Sep 1999	66.5	7.8
			4 Oct 1999	112.5	44.7
			17 Oct 1999	36.0	13.8
			10 Nov 1999	48.0	22.6
			4 Dec 1999	32.5	15.8
			24 Feb 2000	29.5	6.2
			10 Apr 2000	26.5	9.4
			25 May 2000	37.5	21.3
			30 May 2000	101.0	28.1
			21 Sep 2000	81.0	18.8
			5 Feb 2001	69.0	35.0
			28 Feb 2001	42.0	13.7
			3 Mar 2001	34.5	14.3
			26 Oct 1997	43.8	13.0
			30 Oct 1997	9.4	2.8
	1810141WL	Sa Sarawak Kiri di Ka Cit	9 Nov 1997	30.0	7.3
7	(1302428)	sg Sarawak Kiri di Kg Git	19 Nov 1997	31.5	4.6
			19 Dec 1997	74.3	12.3
			21 Dec 1997	47.2	7.6
			22 Dec 1997	17.3	8.9

			Rainfall-Runoff Data		ta
	Station ID	Station Name	Event Date	Rainfall, P	Runoff, Q
			Event Date	(mm)	(mm)
			2 Feb 1998	27.9	11.5
			3 Feb 1998	10.4	6.3
			4 Feb 1998	16.9	5.4
			21 Feb 1998	23.5	9.4
			2 Apr 1998	38.4	8.5
			13 Apr 1998	28.8	11.8
			1 Jun 1998	26.4	9.8
			24 Jun 1998	59.8	13.3
			08 Jul 1998	46.4	16.8
			23 Jul 1998	34.8	5.3
			25 Aug 1998	23.4	13.0
			03 Sep 1998	29.4	7.8
			1 Oct 1998	44.4	10.2
			13 Oct 1998	31.4	8.8
			31 Oct 1998	35.2	18.8
			28 Nov 1998	17.7	11.8
			22 Dec 1998	41.2	9.0
			20 Jan 1999	43.5	18.9
			25 Jan 1999	44.8	10.6
			15 May 1999	19.2	10.3
			25 May 1999	29.4	11.1
			26 Jun 1999	54.0	27.5
			25 Aug 1985	60.4	36.9
			6 Nov 1985	62.1	31.0
			8 Feb 1986	62.8	36.6
			5 Mar 1987	75.3	28.4
			9 Jul 1988	53.5	21.0
			25 Jun 1990	70.6	13.3
			26 Sep 1990	62.0	25.5
8	180021WL	Sg Tuang di Kg Batu Gong	6 Jul 1991	29.2	4.4
0	(1304439)		23 Nov 1991	76.7	46.0
			16 Jul 1992	51.4	8.2
			21 Aug 1993	23.1	7.4
			1 Jul 1994	20.6	5.7
			02 Dec 1994	31.0	13.2
			1 Jul 1995	72.8	32.8
			31 Mar 1996	66.6	22.4
			12 Jul 1996	45.8	4.9

			Rainfall-Runoff Data		ta
	Station ID Station Name	Event Date	Rainfall, P (mm)	Runoff, Q (mm)	
			28 Sep 1996	9.0	5.2
			26 Oct 1997	56.0	5.2
			4 May 1998	38.8	12.9
			13 Feb 1999	65.4	23.7
			30 Jan 1996	26.3	3.9
			1 Feb 1996	77.3	25.1
			2 Feb 1996	91.3	47.6
	1770051WL		18 Feb 1996	52.7	20.4
9	(1316401)	Sg Sekerang di Entaban	1 Oct 1997	13.7	9.3
			23 Dec 1997	7.0	4.5
			29 Dec 1997	24.6	5.2
			6 Jan 1998	68.7	16.7
			15 Apr 1998	68.4	25.2
			6 Jan 1990	54.4	14.3
		.WL 1) Sg Layar di Ng Lubau	25 Nov 1990	59.5	16.3
			23 Apr 1991	71.0	39.6
			23 Nov 1992	36.5	23.2
	1750021WL		12 Apr 1993	99.2	50.9
10	(1415401)		4 Feb 1994	56.0	41.0
			22 Dec 1994	47.3	34.5
			3 Mar 1995	66.5	44.2
			4 May 1997	44.5	29.9
	1770051WL (1316401) 1750021WL (1415401) 1740031WL (1813401)		25 Aug 1998	52.0	38.0
			28 Oct 1999	68.5	56.3
			22 Dec 1997	37.5	16.1
			11 Apr 1998	16.0	12.0
			3 Jun 1998	58.0	17.0
			29 Aug 1998	23.5	7.5
			23 Sep 1998	80.0	40.2
			26 Mar 1999	32.5	8.3
			1 Oct 1999	43.5	13.6
11	1740031WL	Sg Sebatan di Sebatan	5 Oct 1999	31.5	12.2
	(1813401)		3 Dec 1999	27.5	14.2
			6 Jan 2000	63.5	12.3
			26 Feb 2000	10.9	2.6
			13 Sep 2000	44.0	13.7
			26 Sep 2000	23.0	7.8
			1 Oct 2000	69.0	19.0
			12 Apr 2001	29.0	23.3

			Rain	fall-Runoff Da	ta
	Station ID	Station Name	Event Date	Rainfall, P (mm)	Runoff, Q (mm)
			19 Jan 1993	29.1	6.0
	1730431WL		9 Dec 1993	34.8	6.7
12	(1826401)	Sg Katibas di Ng Mukeh	17 Jun 1996	34.6	20.0
			4 Feb 2000	68.1	11.7
			4 May 2000	16.5	3.5
			6 Dec 1997	68.0	14.0
			4 Jan 1998	40.5	15.7
			5 Jan 1998	46.0	15.6
			04 Apr 1998	41.0	15.8
12	1730131WL	Sg Sarikei di Ambas	27 Aug 1998	45.0	19.4
13	(1915401)		1 Oct 1998	66.0	35.5
			11 Nov 1998	55.5	20.6
			14 Feb 2000	54.0	18.3
			22 Mar 2000	46.0	18.0
			13 Sep 2000	63.5	24.0
		Btg Rajang di Ng Ayam	3 Jun 1994	126.5	52.2
			4 Jul 1995	45.8	26.7
	1730451WL		12 Oct 1995	41.5	20.8
14	(1918401)		13 Aug 1996	65.6	20.8
			19 Jan 1998	23.2	17.8
			14 Sep 1999	33.6	8.5
			5 Dec 1999	51.6	9.3
			3 Oct 1991	14.9	9.5
			25 Sep 1993	84.3	19.6
	1710011WL		4 Jun 1995	78.8	16.7
15	(2421401)	Sg Oya di Setapang	6 Oct 1995	41.6	17.9
			7 Jun 1996	36.7	5.3
			9 Jul 1996	7.0	5.6
			16 Jul 1998	48.3	10.8
16	1700031WL (2523401)	Btg Mukah di Selangau	31 May 1983	57.9	9.8
			30 Apr 1988	20.2	6.6
	1640021WL		24 May 1988	13.2	6.1
17	(3231401)	Sg Sidu ai Sidu (Atc)	5 Jun 1990	29.9	10.1
			17 Feb 1991	57.2	7.1
			7 Feb 2000	35.4	13.1

			Rain	fall-Runoff Da	ta
	Station ID	Station Name	Event Date	Rainfall, P (mm)	Runoff, Q (mm)
			16 Feb 1984	37.1	17.8
			23 Feb 1984	24.4	17.5
	1540000114		19 Sep 1984	40.3	8.6
18	1540061WL	Sg Limbang di Insungai	21 Jan 1985	54.2	12.5
	(4448420)		7 May 1985	77.1	44.0
			14 Feb 1987	31.7	14.0
			29 Oct 1989	27.1	20.0
			1 Oct 1991	42.4	11.1
			5 May 1995	66.0	23.4
10	1520011WL	Sa Trucan di Long Tongoo D	11 Feb 1997	17.0	7.4
19	(4553401	Sg Trusan di Long Tengoa D	26 Sep 1997	30.7	17.3
			10 Oct 1997	24.0	9.7
			26 Sep 1998	16.7	8.8

Appendix B: Comparison between Simulated and Observed Hydrographs

Figure B.1: Simulated and Observed Hydrograph of Sg Lenggor di Bt 42 Kluang/Mersing (Event Nov 1975)

Figure B.2: Simulated and Observed Hydrograph of Sg Lepar di Jam Gelugor (Event Dec 1997)

Appendix B: Comparison between Simulated and Observed Hydrographs

Figure B.3: Simulated and Observed Hydrograph of Sg Bidor di Malayan Tin (Event Oct 1986)

Figure B.4: Simulated and Observed Hydrograph of Sg Selangor di Rantau Panjang (Event Jan 1971)

Appendix B: Comparison between Simulated and Observed Hydrographs

Figure B.6: Simulated and Observed Hydrograph of Sg Labuk di Tampias (Event Aug 1987)

Appendix B: Comparison between Simulated and Observed Hydrographs

Figure B.7: Simulated and Observed Hydrograph of Sg Labuk at Tampias (Event Dec 1988)

Figure B.8: Simulated and Observed Hydrograph of Sg Labuk at Tampias (Event March 1993)

Appendix B: Comparison between Simulated and Observed Hydrographs

Figure B.9: Simulated and Observed Hydrograph of Sg Limbang di Insungai (Event Sep 1984)

Figure B.10: Simulated and Observed Hydrograph of Sg Limbang di Insungai (Event May 1985)

No.	Station ID	Station Name	A (km²)	L (km)	L _c (km)	S (%)	L _{g *} (hr)	Cp
1	0010291SF (6503401)	Sg Arau di Ladang Tebu Felda	21	9.26	5.05	0.45	3.35	0.34
2	0060071SF (5405421)	Sg Kulim di Ara Kuda	129	30.66	15.49	0.63	9.58	0.57
3	0180311SF (3913458)	Sg Sungkai di Sungkai	289	45.02	25.74	2.95	10.00	0.51
4	0180861SF (4012401)	Sg Bidor di Malayan Bidor	210	34.41	21.62	2.53	6.85	0.51
5	0180641SF (4212467)	Sg Cenderiang di Batu 32 Jalan Tapah	119	16.68	9.10	0.54	6.89	0.50
6	0180801SF (4310401)	Sg Kinta di Weir Tg Tualang	1,700	83.33	41.47	1.20	19.00	0.44
7	0180761SF (4511468)	Sg Raia di Keramat Pulai	192	37.89	19.35	4.19	4.04	0.48
8	0180131SF (4610466)	Sg Pari di Jalan Silibin	245	38.96	16.53	1.22	13.10	0.45
9	0180291SF (4611463)	Sg Kinta di Tg Rambutan	246	33.77	19.93	3.70	3.63	0.50
10	0180361SF (4911445)	Sg Plus di Kg Lintang	1,090	78.75	48.88	1.58	12.50	0.65
11	0090141SF (5206432)	Sg Kerian di Selama	629	46.44	27.39	2.08	18.10	0.51
12	0240441SF (3118445)	Sg Lui di Kg Lui	68	16.18	8.17	3.16	6.74	0.63
13	0190131SF (3615412)	Sg Bernam di Tanjung Malim	186	25.50	17.20	3.98	3.88	0.53
14	0320551SF (2723401)	Sg Kepis di Jam Kayu Lama	21	10.28	5.15	0.78	3.92	0.52
15	0310061SF (2224432)	Sg Kesang di Chin Chin	161	33.97	15.83	0.22	19.40	0.46
16	0290131SF (2322413)	Sg Melaka di Pantai Belimbing	350	43.23	23.18	0.17	17.10	0.59
17	0290141SF (2322415)	Sg Durian Tunggal di Batu 11 Air Resam	73	14.58	5.92	0.44	7.10	0.59
18	0430271SF (1836402)	Sg Sayong di Johor Tenggara	624	48.03	23.55	0.09	58.70	0.62
19	0500281SF (2235401)	Sg Kahang di Batu 26 Jalan Kluang	587	58.07	24.86	0.27	40.00	0.52
20	0500141SF (2237471)	Sg Lenggor di Batu 42 Kluang/Mersing	207	26.70	10.79	0.34	21.40	0.46
21	0551041SF	Sg Bentong di Jam Kuala	241	29.48	11.90	4.53	5.13	0.51

Table C.1 Average Catchment Lag Times (L_g) and Peaking Coefficients ($C_{\rm p}$) for Peninsular Malaysia

21(3519426)MarongRemarks: *Optimized Lg from HEC-HMS

No.	Station ID	Station Name	A (km²)	L (km)	L _c (km)	S (%)	L _{g *} (hr)	Cp
22	0551181SF (3629403)	Sg Lepar di Jam Gelugor	560	69.35	25.38	0.32	39.10	0.63
23	0551481SF (4320401)	Sg Kecau di Kg Dusun	497	56.57	30.48	0.58	11.10	0.70
24	0600101SF (4131453)	Sg Cherul di Ban Ho	505	59.18	28.35	0.57	21.30	0.67
25	0600111SF (4232452)	Sg Kemaman di Rantau Panjang	626	59.42	30.34	0.58	18.70	0.48
26	0670011SF (4930401)	Sg Berang di Menerong	140	29.98	19.19	2.46	6.10	0.59
27	0670261SF (5129437)	Sg Telemong di Paya Rapat	160	41.04	18.52	1.10	8.35	0.59
28	0670221SF (5229436)	Sg Nerus di Kg Bukit	393	49.58	24.83	0.32	27.70	0.62
29	0680111SF (5428401)	Sg Chalok di Jam Chalok	21	7.21	3.20	0.17	5.70	0.54
30	0740231SF (5718401)	Sg Lanas di Air Lanas	80	17.35	8.39	0.26	11.60	0.57
31	0240341SF (2816441)	Sg Langat di Dengkil	1,240	70.32	23.14	0.48	21.70	0.47
32	0240511SF (2918401)	Sg Semenyih di Kg Rinching	225	35.79	17.03	1.21	8.19	0.49
33	0210311SF (3516422)	Sg Selangor di Rasa	321	36.23	17.51	2.60	5.87	0.50
34	0210201SF (3414421)	Sg Selangor di Rantau Panjang	1,450	74.32	33.88	0.93	38.69	0.53
35	0230391SF (3116434)	Sg Batu di Sentul	145	28.43	12.23	1.98	5.88	0.60
36	0230401SF (3116433)	Sg Gombak di Jalan Tun Razak	122	30.86	16.74	2.05	3.27	0.49
37	0320381SF (2625412)	Sg Muar di Batu 57 Jalan Gemas-Rompin	1,210	90.46	62.85	0.13	32.00	0.72
38	0270081SF (2519421)	Sg Linggi di Sua Betong	523	59.58	28.56	0.93	26.40	0.46
39	0430121SF (1737451)	Sg Johor di Rantau Panjang	1,130	61.34	25.57	0.06	69.20	0.65
40	0720051SF (6022421)	Sg Kemasin di Peringat	48	25.86	14.54	0.03	22.70	0.62

Table C.1 Average Catchment Lag Times ($L_{\rm g}$) and Peaking Coefficients (C_p) for Peninsular Malaysia

Remarks: *Optimized L_g from HEC-HMS

No.	Station ID	Station Name	A (km²)	L (km)	L _c (km)	S (%)	L _{g*} (hr)	Cp
1	0850041WL (4278402)	Sg Tawau di Kuhara	104	37.64	26.27	1.67	8.10	0.52
2	0870011WL (4381401)	Sg Balung di Balung Bridge	137	38.22	23.89	0.98	4.80	0.62
3	0790021WL (4474401)	Sg Kalabakan di Kalabakan	1,150	77.39	36.03	0.47	12.10	0.72
4	0880011WL (4581401)	Sg Kalumpang di Mostyn Bridge	544	67.08	28.51	0.59	7.80	0.60
5	0750041WL (4764402)	Sg Talangkai di Lotong	652	60.36	31.13	0.38	4.30	0.43
6	1490031WL (4955403)	Sg Mengalong di Sindumin	522	61.07	31.43	0.92	7.80	0.54
7	1040031WL (5074401)	Sg Kuamut di Ulu Kuamut	2,950	166.23	67.77	0.21	8.50	0.53
8	1480021WL (5156401)	Sg Lakutan di Mesapol Quarry	173	33.62	14.88	0.98	8.50	0.53
9	1010031WL (5181401)	Sg Segama di Limkabong	2,175	186.80	108.34	0.29	18.10	0.71
10	1460121WL (5261402)	Sg Sook di Biah	1,684	120.87	48.74	0.14	31.50	0.52
11	1460211WL (5461401)	Sg Baiayo di Bandukan	176	31.53	16.76	2.59	2.90	0.40
12	1460221WL (5462402)	Sg Apin-Apin di Waterworks	113	37.91	20.94	2.37	4.00	0.55
13	1460251WL (5668401)	Sg Kegibangan di Tampias P.H.	800	54.23	28.45	1.49	3.90	0.49
14	1400021WL (5760401)	Sg Papar di Kaiduan	365	48.82	27.69	1.80	3.70	0.52
15	1400041WL (5760402)	Sg Papar di Kogopon	546	65.46	36.60	1.37	4.00	0.55
16	1160151WL (5768401)	Sg Labuk di Tampias	2,010	89.11	42.33	1.18	5.90	0.58
17	1390021WL (5961401)	Sg Moyog di Penampang	200	28.81	14.53	1.98	4.20	0.41
18	1160031WL (6073401)	Sg Tungud di Basai	700	87.06	46.92	0.43	10.90	0.64
19	1360041WL (6162403)	Sg Tuaran di Pump House 1	695	57.06	33.95	1.61	6.10	0.42
20	1200011WL (6172401)	Sg Sugut di Bukit Mondou	2,101	124.47	70.75	0.77	11.20	0.59
21	1340021WL (6264401)	Sg Kadamaian di Tamu Darat	388	46.99	21.61	3.64	2.40	0.52

Table C.2: Average Catchment Lag Times (L_g) and Peaking Coefficients (C_p) for Sabah

Remarks: *Optimized $L_{g}% ^{}$ from HEC-HMS

No.	Station ID	Station Name	A (km²)	L (km)	L _c (km)	S (%)	L _{g*} (hr)	C _p
22	1340031WL (6364401)	Sg Wariu di Bridge No.2	243	31.25	18.12	4.65	2.40	0.59
23	1280011WL (6468402)	Sg Bongan di Timbang Batu Sabah	470	57.62	26.92	0.98	5.40	0.57
24	1260011WL (6670401)	Sg Bengkoka di Kobon	700	64.69	28.90	1.58	3.60	0.33

Table C.2: Average Catchment Lag Times (L_g) and Peaking Coefficients (C_p) for Sabah

Appendix C: Average Catchment Lag Times and Peaking Coefficients

Table C.3: Average Catchment	Lag Times (L _g) and Peaking	Coefficients (Cp) for Sarawak
------------------------------	-------------	------------------------------	------------------	---------------

No.	Station ID	Station Name	A (km²)	L (km)	L _c (km)	S (%)	L _g (hr)	Cp
1	1790041WL (1004438)	Sg Kayan di Krusen	456	56.87	23.89	0.47	10.31	0.64
2	1790051WL (1005447)	Sg Kedup di New Meringgu	342	50.61	29.42	0.16	41.38	0.63
3	1770061WL (1015401)	Sg Entebar di Entebar	26	7.93	3.98	0.46	5.21	0.61
4	1770021WL (1018401)	Sg Ai di Lubok Antu	1,326	110.09	60.74	0.32	10.84	0.66
5	1790031WL (1108401)	Sg Sabal Kruin di Sabal Kruin	127	24.14	13.20	0.61	29.99	0.67
6	1810061WL (1301427)	Sg Sarawak Kanan di Pk Buan Bidi	215	43.87	17.94	0.69	7.97	0.67
7	1810141WL (1302428)	Sg Sarawak Kiri di Kg Git	442	44.44	22.91	0.22	8.64	0.75
8	180021WL (1304439)	Sg Tuang di Kg Batu Gong	64	23.42	13.22	0.21	28.84	0.66
9	1770051WL (1316401)	Sg Sekerang di Entaban	715	114.07	46.82	0.50	10.36	0.59
10	1750021WL (1415401)	Sg Layar di Ng Lubau	321	50.62	22.20	0.37	6.67	0.76
11	1740031WL (1813401)	Sg Sebatan di Sebatan	35	13.45	4.89	0.46	8.59	0.42
12	1730431WL (1826401)	Sg Katibas di Ng Mukeh	2,257	137.15	47.45	0.29	10.96	0.58
13	1730131WL (1915401)	Sg Sarikei di Ambas	70	12.54	9.35	0.35	6.58	0.72
14	1730451WL (1918401)	Btg Rajang di Ng Ayam	1,588	97.05	45.71	0.10	17.18	0.73

Remarks: *Optimized $L_g\,\mbox{from}\,\mbox{HEC-HMS}$

No.	Station ID	Station Name	A (km²)	L (km)	L _c (km)	S (%)	L _g (hr)	C _p
15	1710011WL (2421401)	Sg Oya di Setapang	869	94.47	45.59	0.23	20.40	0.66
16	1700031WL (2523401)	Btg Mukah di Selangau	1,021	90.47	44.20	0.12	19.63	0.78
17	1640021WL (3231401)	Sg Sibiu di Sibiu (Atc)	171	40.54	20.73	0.13	15.30	0.59
18	1540061WL (4448420)	Sg Limbang di Insungai	2,410	177.26	90.03	0.91	13.03	0.62
19	1520011WL (4553401)	Sg Trusan di Long Tengoa D	1,849	131.77	67.64	0.96	7.09	0.63

Table C.3: Average Catchment Lag Times (L_g) and Peaking Coefficients (C_p) for Sarawak

Remarks: *Optimized $\boldsymbol{L}_{\!g}\,\text{from}\,\text{HEC-HMS}$

Appendix D: Computer Program for Unit Hydrograph Computation

nyu	rological Proced	ule NO 11.			
Des	ign Flood Hydrog	graph Estimati	on for Rural	Catchments in N	Malaysia
This p	rogram is designed to u	ise for rural catchme	ents in:	Peninsular Mal	aysia
Inpu	t: (Please input	the parameter in blue	e colour cell)		
Catc	hment Data		Example for:	Sg Sungkai	
1) (Catchment Area, A:		289	km ²	
2) [Main Stream Length, L:		45	km	
3) \	Weighted Slope (of the n	nain stream), S:	2.95	%	
4) 5	Snyder Peaking Coefficie	ent, Cp:	0.55		
Rain	fall Data				
1) F	Rainfall Duration, RD:		6	hrs	
2) [Design Rainfall, P:		132	mm	
3) I	No of Time Interval:		12	(Automatically update	based on rainfall duration
4) /	Area Reduction Factor:		0.88	(Refer Reference)	
E \ 7	Compored Bettern Dagiou		9	(Defer Deference)	

Appendix D: Computer Program for Unit Hydrograph Computation

HYDROLOGICAL PROCEDURES PUBLISHED

No. 1 -Estimation of the Design Rainstorm in Peninsular Malaysia (Revised and Updated, 2015). No. 2 -Water Quality Sampling for Surface Water (1973) No. 3 -A General Purpose Event Water Level Recorder (1973) No. 4 -Magnitude and Frequency of Floods in Peninsular Malaysia (Revised and Updated, 2018) No. 5 -Rational Method of Flood Estimation for Rural Catchments in Peninsular Malaysia (Revised and Updated, 2010). No. 6 -Hydrological Station Identifier System (Revised and Updated, 2017) No. 7 -Hydrological Station Registers (Revised and Updated, 2017) No. 8 -Field Installation and Maintenance of Caprecorder 1599 (1974) No. 9 -Field Installation and Maintenance of Capricorder 1598 (1974) No. 10 -Stage-Discharge Curves (1977) No. 11 -Design Flood Hydrograph Estimation for Rural Catchments in Peninsular Malaysia (Revised and Updated, 2018) No. 12 -Magnitude and Frequency of Low Flows in Peninsular Malaysia (Revised and Updated, 2015) No. 13 -The Estimation of Storage – Draft Rate Characteristics for Rivers in Peninsular Malaysia (1976) No. 14 -Graphical Recorders Instruction for Chart Changing and Annotation (1976) No. 15 -River Discharges Measurement by Current Meter (1976) No. 16 -Flood Estimation for Urban Areas in Peninsular Malaysia (1976) No. 17 -Estimation Potential Evapotranspiration Using the Penman Procedures (Revised and Updated, 1991) No. 18 -Hydrological Design of Agriculture Drainage Systems (1977) No. 19 -The Determination of Suspended Sediment Discharge (1977) No. 20 -Hydrological Aspects Related to Agricultural Planning and Irrigation Design (1978)

- No. 21 Evaporation Data Collection Using U.S Class "A" Aluminum Pan (1981)
- No. 22 River Water Quality Sampling (1981)
- No. 23 Operation and Maintenance of Cableways Installations (1982)
- No. 24 Establishment of Agro-hydrological Stations (1982)
- No. 25 Standard Stick Gauge of River Station (1982)
- No. 26 Estimation of Design Rainstorm in Sabah and Sarawak (Revised and Updated, 2018)
- No. 27 Estimation of Design Flood Hydrograph Using Clark Method for Rural Catchments in Peninsular Malaysia (2010)
- No. 32 Hydrological Standard for Rainfall Station Instrument (2018)
- No. 33 Hydrological Standard for Water Level Station Instrument (2018)
- No. 35 Hydrological Standard for Water Quality Station Instrument (2018)

