HYDROLOGICAL PROCEDURE NO. 12

MAGNITUDE AND FREQUENCY OF LOW FLOWS IN PENINSULAR MALAYSIA (REVISED AD UPDATED)

1985

JABATAN PENGAIRAN DAN SALIRAN KEMENTERIAN PERTANIAN MALAYSIA

HYDROLOGICAL PROCEDURE No. 12

MAGNITUDE AND FREQUENCY OF LOW FLOWS

IN

PENINSULAR MALAYSIA (REVISED AND UPDATED)

Hydrological Procedure No. 12

MAGNITUDE AND FREQUENCY OF LOW FLOWS

IN

PENINSULAR MALAYSIA

(REVISED AND UPDATED)

Contributor:

TOONG AH TEA

Price: \$20/=

DRAINAGE AND IRRIGATION DIVISION MINISTRY OF AGRICULTURE MALAYSIA

> First published in 1976 Revised and updated in 1985

SYNOPSIS

This procedure is a revised and updated version of DID Hydrological Procedure No. 12 (1976) based on period of data available up to year 1982. Regional analysis was used to develop this procedure for estimating low flows of rivers in Peninsular Malaysia. Two maps identifying regions in Peninsular Malaysia with similar mean annual low flow and low flow frequency characteristics respectively were produced. This procedure allows the design low flow of an ungauged catchment in Peninsular Malaysia to be estimated based on the regions it is identified with, the catchment area and the mean annual rainfall over the catchment.

This procedure will be revised and updated again in the future when additional 10 years of data are collected and available for analysis.

CONTENTS

Page

SY	NOP	SIS	iii
1.	INT	RODUCTION	1
	1.1	Low flow estimation	1
	1.2	Objective	1
	1.3	Low flow frequency analysis	1
	1.4	Frequency distribution	2
	1.5	Regional frequency analysis	3
2.	DE	/ELOPMENT OF PROCEDURE	3
	2.1	Methodology	3
	2.2	Selection of catchments	3
	2.3	Extraction of flow data	3
	2.4	Frequency analysis of individual stations	4
	2:5	Regional low flow frequency curves	4
	2.5	2.5.1 Delineation of low flow frequency regions (RC Regions)	4
		2.5.2 Derivation of regional low flow frequency curve	5
	2.6	Regional mean annual minimum flow (MAM) equations	5
		2.6.1 Introduction	5
		2.6.2 Methodology	5
		2.6.3 Catchment characteristics	5
		2.6.4 Delineation of RE Regions	6
		2.6.5 Derivation of regional MAM equations	6
3.	USE	OF THE PROCEDURE	12
	3.1	Introduction	12
	3.2	Method of application	12
	3.3	Worked examples	12
		3.3.1 Example 1	12
		3.3.2 Example 2	13
4	DEI		
4.		IABILITY OF THE PROCEDURE	14
	4.1	General	14
	4.2	Streamflow data errors	14
	4.3	Errors in discharge frequency analysis	14
	4.4	Errors in regionalization	14
5.		IPARISON OF THIS PROCEDURE WITH OTHER LOW FLOW	15
		DIES IN PENINSULAR MALAYSIA	15
	5.1	Comparison with HP 12 (1976)	15 16
	5.2	Comparison of results obtained using HP 12 (1985) and HP 12 (1976)	
	5.3	Comparison with other low flow studies in Peninsular Malaysia	17
6.	REF	ERENCES	20
	Appe	NDIX I—The general extreme value distribution	21
		NDIX II—List of catchments and catchment characteristics	22
		NDIX III—Results of individual station frequency analysis	24

1. INTRODUCTION

1.1 Low flow estimation

A problem that is invariably encountered in the design of water resources projects is the determination of the reliability of water supply. When the water source is from an unregulated natural river, the reliability of the water availability is a function of the low flow characteristics. The three main characteristics of low flow which are of interest to designers are:

- (i) its duration,
- (ii) its magnitude and
- (iii) its frequency of occurrence.

The permissible duration of low flow will reflect the tolerance of the user to periods of water deficits. The magnitude of low flow for the specified duration will determine the amount of water that is available to the user. The specified frequency of occurrence of low flow reflects the risk associated with the failure of the water supply and is dependent on the socio-economic importance of the scheme to the community.

Rapid development has placed increasing demand on water resources development and pressure to provide more information on the flow characteristics of streams and rivers, many of which have few or no streamflow data. In many cases, especially for the smaller projects, economic and social pressure do not permit a delay in project implementation pending acquisition of streamflow data.

1.2 Objective

The objective of this procedure is to provide a method of estimating the reliability of low flows of rivers in Peninsular Malaysia. The results can be used in the design of intakes, reservoirs, irrigation systems, water supply systems and hydro-electric power generation schemes, and in the management of water quality.

The durations and return periods investigated ranged between 1 and 30 days and between 1 and 50 years respectively.

1.3 Low flow frequency analysis

In low flow frequency analysis, the aim is to derive a low flow frequency curve for low flows of a specified duration (say D days) The frequency curve is derived by fitting a theoretical frequency distribution to the sample of recorded D-day low flows using either graphical or analytical means. For a selected return period T, the design discharge Q cab be read from this curve. In this study D ranges from 1 to 30 days. Each annual D-day low flow is regarded as a variable x, which is characterised by its frequency distribution. The distribution may be described as:

- (a) f (x), the probability density function (pdf) which gives the probability or relative frequency of occurrence of x or
- (b) F(x), the corresponding cumulative distribution function (cdf).

The two functions are related by:

$f(x) = \frac{dF(x)}{dx}$				••	••	••		•••		•••	•••		•••	(1.1)
F(x) = f(x) dx where by definition	••	•••	•••	••	• •	•••	••	•••	•••	••	• •	• •	•••	(1.2)
$F(x) = \int_{-\infty}^{\infty} f(x) dx = 1$	• ••	••		••	• •	•••	••	•••	••		• •	•••		(1.3)

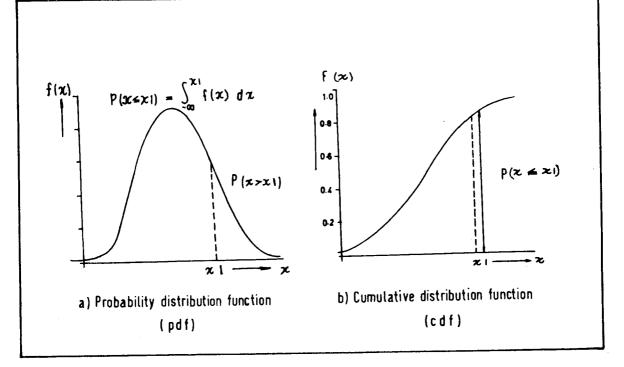


FIG 1.1: CHARACTERISTICS OF pdf AND cdf

Fig. 1.1 illustrates the relationship between the two distribution functions. F (x1) is the probability that a random variable x is less than or equal to x1.

where P denotes the probability

Closely associated with this is the concept of return period (T). The return period of a low flow x1 is the average interval of time (in years) in which a low less than or equal to x1 is expected to recur. For example, if the low flow is equal to or below a certain value x1, on the average 5 times in 100 years, then:

F(x1) = P(x < x1) = 5/100 = 0.05

The return period T is then given by:

1.4 Frequency distribution

The probability distribution adopted for this investigation is the type III extreme value (EV III) distribution described by Gumbel (1954) and Jenkinson (1969). This distribution has been widely used in previous low flow studies and has been shown by Matalas (1963), Joseph (1970) and Kite (1975) to be a satisfactory model for analysing low flows. A brief mathematical description of the General Extreme Value (GEV) distribution is given in Appendix I. Certain assumptions and limitations are inherent in the use of the GEV distribution. These are as follows:

- (i) The observations from which the extreme values are drawn should be independent.
- (ii) The observations must be reliable and should be recorded under identical conditions (i.e. homogenous records).

(iii) The number of observations n, from which the extreme values are taken, must be large.

1.5 Regional frequency analysis

Frequency analysis at a single site was the first phase of frequency analysis to develop. Later the concept of flow frequency analysis broadened into the field of regional frequency analysis. In the latter, the low flow data over a wide region are analysed to define the common dimensionless low flow frequency curves for low flows in the region.

In this study, the regional analysis method applied by the Natural Environment Research Council of Britain (NERC) (1975) and Dryton et. a1. (1980) was adopted. The regional analysis consists basically of two components:

- (i) A set of dimensionless regional frequency curves for various low flow durations relating Q_{D,T}/MAM to T, where Q_{D,T} is the D-day duration, T-year low flow and MAM is the mean annual minimum flow (in this procedure the annual 1-day low flow is taken as the annual minimum flow)
- (ii) A set of regional regression equations relating MAM to catchment characteristics.

2. DEVELOPMENT OF PROCEDURE

2.1 Methodology

The methodology adopted in developing this procedure is summarised below:

- (i) Selection of catchments.
- (ii) Extraction of low flow data for selected flow durations.
- (iii) Frequency analysis of individual station flow data.
- (iv) Derivation of demensionless regional low-flow frequency curves.
- (v) Development of regional equations relating MAM to catchment characteristics.

2.2 Selection of catchments

All river stations operated by the Drainage and Irrigation Department (DID) were assessed for possible inclusion in this study. The flow stations were selected based on the followiang criteria:

- (i) The catchment land use has not changed significantly over the period of record.
- (ii) The low flows have not been substantially regulated or affected by the extraction, storage or diversion of water upstream.
- (iii) There are 8 or more years of streamflow record available.
- (iv) The catchments are predominantly rural.
- (v) The catchment areas are greater than 20 km^2 .

The first two conditions are consistent with the normal requirements for a homogeneous data sample. The third condition is to ensure an adequate number of data values for reliable frequency analysis. Condition (iv) is necessary because this procedure is derived for application to rural catchments and not urban catchments. Condition (v) is imposed as it was felt that the low flow characteristics of very small catchments may be significantly different from those of large catchments.

2.3 Extraction of flow data

For the post-1960 period, the annual 1-,4-,7- and 30-day low flow for each of the selected stations were extracted from DID's computer based data bank using standard retrieval programs. For the pre-1960 period, data were extracted manually.

Upstream water extraction and storage reservoirs affect the flows in some rivers. Where it was found that upstream extraction or storage significantly affected the low flow, the streamflow data were not considered in the analysis. In general, the daily flow values were not corrected for upstream water extraction. However correction to the 1-day low flow was made if the 1-day low flow

was much lower than the 4-day low flow. The portion of daily discharge hydrograph which contains the 1-day low flow was plotted for visual checking. If the sudden drop in the 1-day low flow was found to be unreasonable, it was adjusted according to the general trend of the recession curve.

In cases of missing flow data during dry months, data for that year were omitted.

2.4 Frequency analysis of individual stations

The annual D-day low flow series for each station was reduced to its dimensionless form by dividing it by its corresponding MAM. The dimensionless probability plot was obtained for each series by plotting the $Q_{D,T}$ /MAM ratios on log-Gumbel probability paper. The plotting position formulae used were:

(i) The Weibull formula, for record length less than 20 years

$$T = \frac{N+1}{i} \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (2.1)$$

where T = plotting position of an annual low flow, in years

N =length of records in years

and i = rank of the annual low flow in the series (i for the smallest, N for the largest)

(ii) The Gringorten formula, for record length greater than 20 years

$$T = \frac{N + 0.12}{i - 0.44} \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad (2.2)$$

These plotting position formulae were recommended by Cunnane (1978) for the GEV distribution.

Frequency analysis on each annual low flow series was also performed by computer. The computer program SSGEV (i) fits the GEV distribution to dimensionless annual low flow series by the method of least squares. The program outputs the $Q_{D,T}$ /MAM values for various return periods, T. By examining of the results of individual station frequency analysis, the low flow data of 8 stations were suspected to be inaccurate. Thus, the low flow records of these stations were not used. In all, data from only 53 catchments for period of records available up to 1982 were used in the derivation of this procedure. The 53 catchments are listed in Appendix II. The results of individual station analyses are tabulated in Appendix III.

2.5 Regional low flow frequency curves

2.5.1 Delineation of low flow frequency regions (RC Regions)

The procedure adopted for the development of the regional frequency curves is similar to that used by the NERC. First, low flow frequency regions (RC regions) were identified.

The log-Gumbel probability plots (described in section 2.4) from nearby stations were superimposed to examine the similarity of the plotted data and the fitted curve. Stations which exhibited similar dimensionless frequency distribution were lumped together and treated as belonging to one sub-region. Many sub-regions were identified in this manner and the sub-regional probability plot was derived by drawing a mean curve using all the low flow data of the stations within the sub-region. These sub-regional curves were superimposed and the process of examining the similarity of the low flow frequency curves was repeated. Adjoining sub-regions which displayed similar curves were combined to form a low flow frequency region (RC regions).

In constructing the RC regions, the many factors that could influence the low flow in the different catchments were taken into account. Attention was given to the climate, topography and soil of the catchment, the aim being to locate catchments of similar low flow frequency

characteristics in the same region. The delineation was also guided by the available climatic, soil and topographical maps, for example: maps of Hydrological Regions by Goh (1974), Mean Annual Rainfall Maps by DID (1976) and Average Annual and Monthly Surface Water Resources in Penisular Malaysia by Teh (1982). Altogether four RC regions were derived and their boundaries are as shown in Map A.

2.5.2 Derivation of regional low flow frequency curves

A regional frequency curve is essentially a frequency distribution of the average $Q_{D,T}$ /MAM values for a region and is assumed to be a representive frequency distribution for all the catchments in that region.

In deriving the regional frequency curve, the annual low flows of each station were assembled in the form of $Q_{D,T}$ /MAM with plotting positions expressed as the reduced variate y of the Extreme Value distribution, [where $y = -\ln(-\ln(1-l/T))$]. For stations with the same record length, the ith lowest low flow for each station has the same plotting position. The mean value of the ith lowest values could therefore be plotted at this plotting position. However, the selected records were not of the same length. The method used for computing the regional data points was to divide the y-variate into several class intervals. The data points that fell within a given class interval were averaged to give the regional data point (described by co-ordinates y and $Q_{D,T}$ /MAM).

The equation by Jenkinson (1969) for the EV III distribution given in Eqn. 2.3 below was fitted to the regional data points.

where $u, \not a$ and k are the 3 parameters of the GEV distribution.

A computer program was developed to compute the regional data points and fit the EV III distribution to the computed points. In fitting the equation, the program uses the Rosenbrock (1960) optimization technique. This minimizes an objective function which is the sum of squares of the actual $Q_{D,T}$ /MAM values using Eqn. 2.3. The four sets of low flow frequency curves derived for durations 1, 4, 7 and 30 days are as shown in Figs. 2.1 to 2.4. The parameters of the regional frequency low flow curves and the regional $Q_{D,T}$ /MAM values for selected return periods are tabulated in Table 2.1.

2.6 Regional mean annual minimum flow (MAM) equations.

2.6.1 Introduction

Having obtained the dimensionless regional frequency curves, the next step was to relate MAM to catchment characteristics so that low flow estimates can be made for ungauged catchments.

The regions for the MAM equations, may not have the same boundaries as those of the RC regions. Thus another set of regions designated as the RE regions was delineated for developing the regional MAM equations.

2.6.2 Methodology

It is assumed that the relationship between MAM and the measurable catchment characteristics is of the form:

This kind of multiplicative function had been used in hydrology by Clark (1973) and the NERC(1975). Taking the logarithms of Eqn. 2.4 results in

2.6.3 Catchment characteristics

Past studies by Riggs (1973), Nash (1965) and NERC (1975) made use of many types of catchment, climatic and physical characteristics as variables in the MAM equation. In this procedure only the catchment area (AREA) and the Mean Annual catchment Rainfall (MAR)

were used as variables in developing the equations. These two catchment variables have been found to be the most significant and frequently used variables in a study by Gray (1964). The other catchment variables were not used because they cannot be extracted accurately from existing maps.

The catchment areas were obtained from DID's "Hydrological Data Publication". The MARs were obtained by planimetering the 1 : 1,000,000 Peninsular Malaysia Mean Annual Rainfall Map by DID (1976).

2.6.4 Delineation of RE Regions

As a first trial, the whole of Peninsular Malaysia was considered as one RE region. Data from all the 53 selected catchments were used in establishing the following MAM equation:

 $\log (MAM) = \log a + b1 \log (AREA) + b2 \log (MAR) \qquad (2.6)$

where MAM = mean annual minimum flow (cumecs)

AREA = area of catchment (km)

MAR = mean annual catchment rainfall (mm)

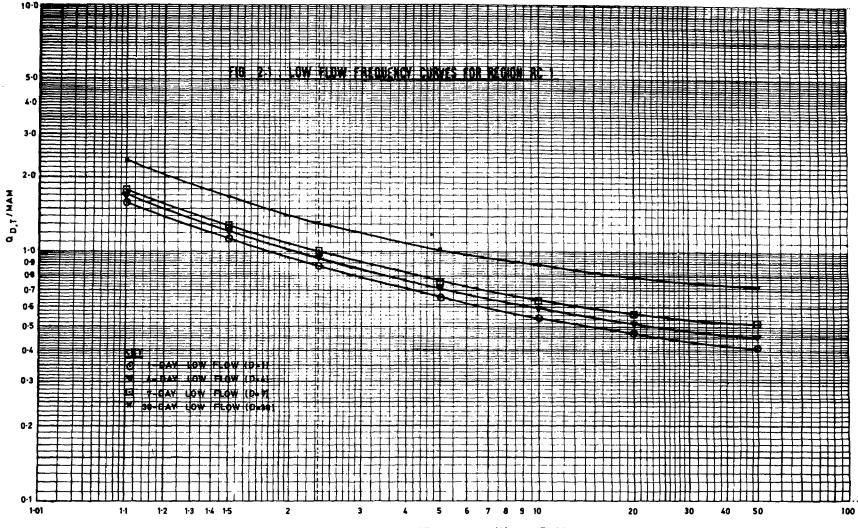
a, b1 and b2 are coefficients.

The coefficients of this equation were derived using the multiple linear regression. The MAM Equation for Peninsular Malaysia obtained by the analysis is:

$MAM = 1.821 \times 10^{-11} \text{ AREA}^{1.043} \text{ MAR}^{2.533}$						• •	(2.7)
The residuals (r) resulting from the equation	n are given	n by t	he fo	llowi	ng:		

Where MAM_{obs} = Observed mean annual minimum flow and

 $MAM_{est} = Estimated$ mean annual minimum flow from Eqn. 2.6


These residuals are plotted on a map of Peninsular Malaysia to show their geographical distribution. Trial regions were then formed by grouping neighbouring catchments with the same residual sign (positive or negative) together. This was to ensure that for each region, the residuals resulting from the regional equation is small and distributed normally as N (0,1). Altogether three trial RE regions were delineated. Regional equations were derived for these trial regions. Residuals resulting from these trial regional equations were also plotted on a map of Peninsular Malaysia. The residuals and their geograpical positions were examined, and the final regional boundaries were derived based on the distribution of the residuals and the physical relief of the country. Those catchments with large residuals were considered as outliers and their data were excluded in the final analysis.

2.6.5 Derivation of regional MAM equations

The three final RE regions derived are as shown in Map B. For each region, the relationship given by Eqn. 2.6 was obtained. Table 2.2 below shows the coefficients of the regional MAM equations. The mean annual minimum flow for each of the catchment calculated using the derived regional equations are as shown in Appendix II.

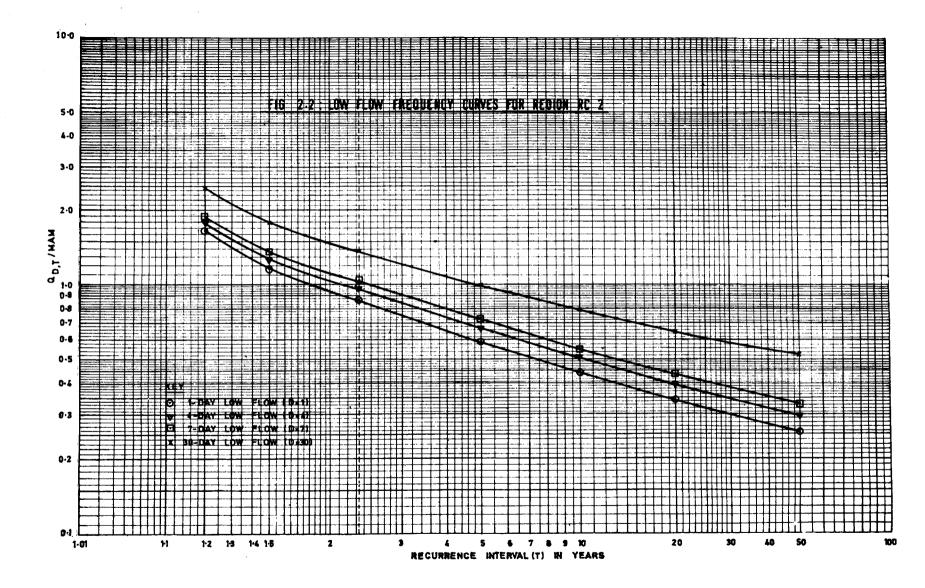
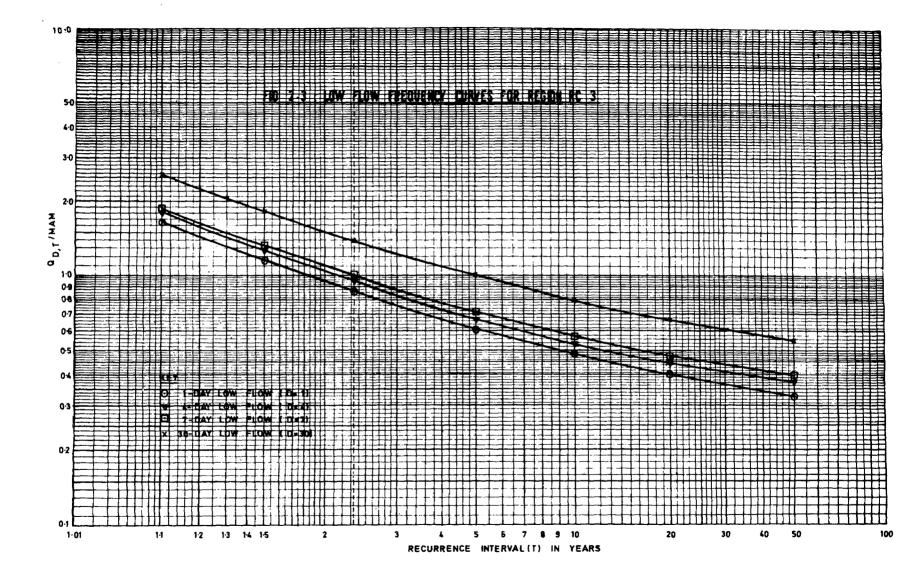
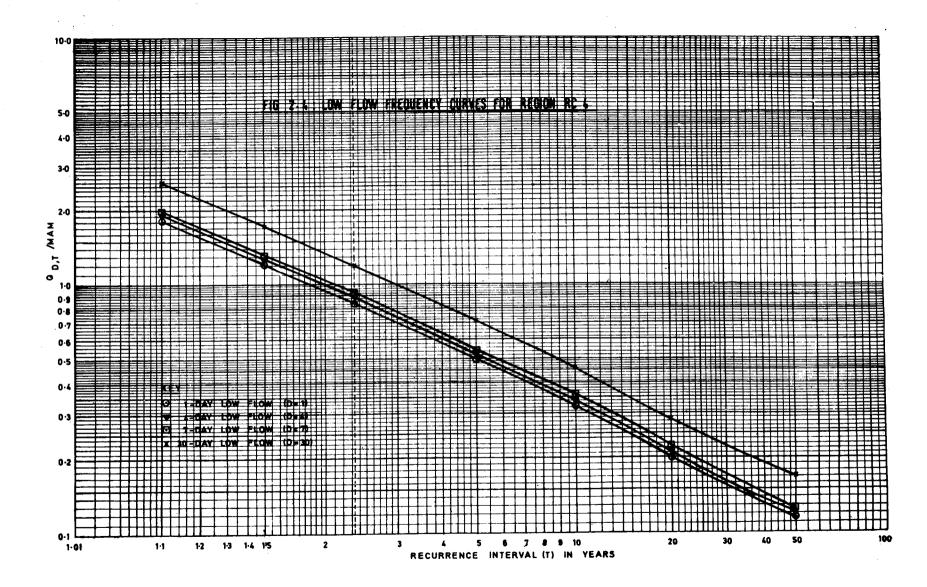

Dagion	С	Coefficients						
Region	а	b1	b2	coefficient squared R ²				
RE 1	1.097×10^{-8}	1.092	1.663	0.97				
RE 2	1.675×10^{-10}	0.920	2.387	0.96				
RE 3	1.675×10^{-16}	1.197	3.856	0.99				
	MAM =	$= a (AREA)^{b1} ($	+ MAR) ^{b2}					

TABLE 2.2: COEFFICIENTS OF REGIONAL MAM EQUATIONS




RECURRENCE INTERVAL (T) IN YEARS

. .

 ∞

REGION	DURATION	Q _{D,T} /MAM FOR VARIOUS RETURN PERIOD T (years)								TYPE III EXTREME VALUE DISTRIBUTION PARAMETERS		
	(DAYS)	1.1	1.5	2.33	5	10	20	5 0	Ч	×	k	
	1	1.592	1.136	0.878	0.656	8.545	0.476	0.420	1.093	- 0.437	0.503	
n e 1	4	1.701	1.220	0.949	0.712	0.594	0.520	0.460	1.176	- 0.462	0.577	
R C 1	7	1.792	1.288	1.006	0.765	0.645	0.571	0.512	1.241	- 0.480	0.594	
, 	30	2.336	1.679	1. 3 2 2	1.025	0.883	0.797	0.731	1.619	- 0.614	0.632	
	1	1.664	1.169	0.870	0.593	0.444	0.344	0.257	1.121	- 0.497	0.492	
RC2	4	1.777	1.272	0.962	0.668	0.506	0.396	0.298	1.222	- 0.514	0.465	
R 6 2	7	1.887	1.361	1.037	0.728	0.556	0.439	0.335	1.310	- 0.536	0.458	
	30	2.459	1.790	1.384	1.000	0.790	0.648	0.523	1.726	- 0.676	0.474	
	1	1,653	1.160	0.874	0.618	0.455	0.400	0.329	1.114	- 0.482	0.540	
R C 3	4	1.802	1.262	0.952	0.677	0.536	0.446	0.373	1.212	- 0.525	0.553	
	7	1.865	1.317	0.999	0.716	0.569	0.475	0.397	1.265	- 0.535	0.543	
	30	2.543	1.818	1.396	1.601	0.796	0.662	0.548	1.749	- 0.718	0.519	
	1	1.810	1.212	0.847	0.507	0.323	0.201	D.116	1.154	- 0.609	0.490	
R C L	4	1.903	1.268	0.085	0.530	0.339	0.211	0.123	1.206	- 0.637	0.492	
R V 7	7	1.994	1.328	0.925	0.554	0.355	0.226	0.132	1.251	- 0.669	0.497	
	30	2.595	1.716	1.193	0.712	0.456	0.286	0.171	1.632	- 0.876	0.506	

TABLE 2.1 : RESULT OF DIMENSIONLESS REGIONAL FREQUENCY ANALYSIS FOR REGIONS RC1, RC2, RC3 AND RC4.

•

11

3. USE OF THE PROCEDURE

3.1 Introduction

The application of this procedure is constrained by the nature of the data used in deriving it. Its application should therefore be confined to catchments that satisfy the following criteria:

- (i) The catchment must be rural.
- (ii) The catchment must not have significant storages (swamps and lakes), or regulations (reservoirs).

Caution must be exercised in applying this procedure to small catchments (areas below 20 sq. km.) and also to catchments located in areas where the density of river stations used in deriving the regional curve is sparse.

3.2 Method of application

The general procedure for the estimation of low flow frequency of rivers in Peninsular Malaysia is as shown in the flow chart in Fig. 3.1 The steps involved in the application of this procedure for the estimation of low flow frequency of an ungauged catchment are as follows:

STEP 1

Determine the area (AREA) of the catchment in km^2 .

STEP 2

Estimate the mean annual rainfall (MAR) in mm for the catchment from available rainfall racords. If no rainfall records are available, the MAR could be estimated from the 1: 1,000,000 Peninsular Malaysia Mean Annual Rainfall Map by DID (1976).

STEP 3

Determine the RE region of the catchment from the MAP B.

STEP 4

Compute the mean annual minimum flow (MAM) from the appropriate regional MAM equation.

STEP 5

Determine the RC region of the catchment from MAP A.

STEP 6

Obtain the various dimensionless ordinates $Q_{D,T}$ /MAM from the regional curves of the RC region determined in STEP 5.

STEP 7

Determine $Q_{D,T}$ by multiplying $Q_{D,T}$ /MAM obtained in STEP 6 by the MAM computed in STEP 4.

3.3 Worked examples

3.3.1 Example 1

Derive the 7-day low flow frequency curve for an ungauged site on Sg. Lipis given the following information:

Catchment Mean Annual Rainfall = 2200 mm Location of site: $4^0 00'$ N, $101^0 40'$ E

STEP 1

```
AREA = 130 \text{ km}^2
```

STEP 2

MAR = 2200 mm

STEP 3

From MAP B, the site in located in RE 3.

STEP 4

Using regional MAM equation of RE 3

 $MAM = 1.675 \times 10^{-16} (AREA)^{1.197} (MAR)^{3.856}$

 $= 1.675 \times 10^{-16} (130)^{1.197} (2200)^{3.856}$

= 0.439 cumecs

STEP 5

From MAP A, the site is located in RC 3

STEP 6

The Q $_{D,T}$ /MAM values for RC 3 are given in Table 1.1 or Fig. 2.3

STEP 7

The 7-day low flow frequency curve at the Sg. Lipis station was computed by multiplying $Q_{D,T}$ /MAM values obtained in STEP 6 by 0.439 (the MAM of this station). The ordinates of the derived curve are tabulated below:

Return Period T (years)	7-day low flow, $Q_{7,T}$ (cumecs)		
1.5	0.58		
2.33	0.44		
5.0	0.31		
10.0	0.25		
20.0	0.21		
50.0	0.17		

TABLE 3.1: 7-DAY LOW FLOW ESTIMATES

FOR SG. LIPIS AT 40 00'N 101040'E

3.3.2 Example 2

Derive the annual D-day low flow frequency curve for Sungai Langat at Dengkil. (DID station no. 2816441).

In this case, 20 years of low flow records were available. The MAM computed from the records was 10.99 cumecs. The site is located in region RC 3. The annual D—day low flow frequency curve was developed from the dimensionless frequency curve of region RC 3 (see Fig. 2.3).

As a comparision, the individual station frequency analysis was also performed. The result of the two methods of analysis are summarised in Table 3.2 below.

Method of Analysis	Duration	$Q_{D,T}$ (Cumecs) for return periods T years									
	D (days)	1.50	2.33	5.00	10.00	20.00	25.00				
Regional Frequency	1	12.75	9.60	6.79	5.34	4.40	4.17				
Analysis	4	13.87	10.46	7.44	5.89	4.90	4.67				
	7	14.47	10.98	7.87	6.22	5.22	4.95				
	30	19.98	15.34	11.00	8.75	7.28	6.81				
Single Station Frequency	1	11.39	8.79	6.54	5.41	4.71	4.55				
Analysis	4	12.10	9.58	7.27	6.08	5.32	5.10				
• * *	7	12.90	10.23	7.85	6.63	5.84	5.65				
	30	18.21	15.15	11.68	9.37	7.50	6.97				

 TABLE 3.2: COMPARISON OF LOW FLOWS DERIVED BY REGIONAL FREQUENCY ANALYSIS AND LOW

 FLOWS DERIVED BY SINGLE STATION FREQUENCY ANALYSIS FOR STATION NO. 2816441

4. RELIABILITY OF THE PROCEDURE

4.1 General

In applying this procedure, it is important to consider the statistical reliability of the estimated low flows. Because of the complex nature of errors involved, a theoretical derivation of an expression for the standard error was not carried out here. However it is useful to discuss the various sources of errors and the likely magnitude of errors associated with them, so that users can subjectively evaluate the accuracy of any low flow estimates made. The sources of errors are discussed below.

4.2 Streamflow data errors

Uncertainties in the streamflow data are due to the following:

(i) Errors in measuring amd determining discharge.

This arises because of inaccuracies in gauging measurements, errors in calculations, unstable gauging control sections, etc. Such errors may be as large as 20 per cent or more. For most stations there are very few or no low flow gauging carried out. Thus, at low stages the rating curves are derived by extrapolation and this is subjected to large errors. The magnitude of the errors involved may be as large as 30 per cent.

(ii) Errors caused by upstream water abstraction.

Stations with considerable water abstraction in relation to the normal low flow revealed very erratic daily discharge hydrograph patterns. Since it was not possible to correct the measured flows for abstractions, data from stations with significant upstream draw-off, were excluded from the analysis.

4.3 Errors in discharge frequency analysis

In this study the type III extreme value distribution was used to represent the frequency distribution of low flows. The probability curves were fitted by the method of least squares. In each case, the goodness-of-fit of the theoretical distribution to the low flow data was inspected by eye. The error associated with the choice of the probability distribution and the method of fitting the distribution to the data is considered to be small.

According to Taylor and Goh (1976): "The length of records used in the frequency analysis has a significant effect on the accuracy of the derived low flow frequency curves in that there is some uncertainty associated with assigning recurrence intervals (or cumulative probabilities) to recorded data; the degree of uncertainty depending on the length of the records being analysed. The shorter the period of the record the greater the range of recurrence intervals which could be assigned to a particular low flow event."

Fig. 4.1 shows the variation in confidence limits of the assigned recurrence interval of a 15-year low flow as a function of record length. The limits shown on Fig. 4.1 define the range within which there is 67% probability that the true recurrence interval will lie. It is assumed that the possible recurrence intervals for a particular low flow event are normally distributed.

Since the station records used in this study were between 8 and 35 years, it can be seen that the possible error in the low flow frequency curves is considerable.

4.4 Errors in regionalization

The accuracy with which the low flow regions are defined depends largely on the density of gauged catchment over the area. Within a region any local variations in climate and geology will result in the true low flow charactertistics differing from those estimated from the regional relationship. The precision of the regression equations for estimating MAM can be judged by the correlation between the observed and predicted values of MAM in Table 4.1.

RE Region	Correlation Coefficient Squared (R ²)	
	0.97	
RE 2	0.96	
RE 3	0.99	

TABLE 4.1: CORRELATION BETWEEN OBSERVED
AND PREDICTED MAM

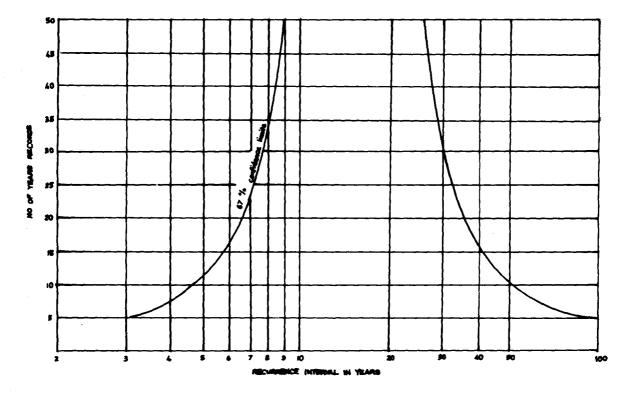


FIG. 4.1: CONFIDENCE LIMITS FOR 15-YEAR LOW FLOW

5. COMPARISON OF THIS PROCEDURE WITH OTHER LOW FLOW STUDIES IN PENINSULAR MALAYSIA

5.1 Comparison with HP 12 (1976)

The first edition of DID Hydrological Procedure No. 12—"Magnitude and Frequency of Low Flows in Peninsular Malaysia" by Taylor and Goh (1976) was developed based on streamflow data over the period 1948-1970. Since then more data have been collected and are available for analysis and hence the decision to review the procedure, In an attempt to improve upon it, a slightly different approach was adopted. This revised procedure therefore not only uses more data (i.e. data after 1970), but also contain some changes in its approach and analysis. Major differences in both procedures are highlighted as follows:

(i) MORE STREAMFLOW DATA USED

Additional data for the period 1971 to 1982 were used in the derivation of this procedure.

(ii) DATA FROM SOME STATIONS USED IN HP 12 (1976) NOT INCLUDED IN THIS STUDY

Difficulty was encountered in fitting the EVIII distribution to data from twelve stations used in HP 12 (1976). These twelve stations were not included in the derivation of this procedure.

(iii) TWO REGIONAL MAPS

In this procedure two maps were produced; one for the MAM equations, the other for the low flow frequency curves. The RE region demarcates areas which share the same MAM equation coefficients while the RC region demarcates areas in which a particular set of dimensionless flow frequency curves apply.

(iv) LOW FLOWS OF MORE THAN 1 DAY WERE EXTRACTED AND ANALYSED

In HP 12 (1976) low flows of more then 1 day duration were derived by extrapolating from regional recession curves. In this procedure, actual annual low flow data of various durations were analysed and frequency curves for low flows of various durations derived.

5.2 Comparison of results obtained using HP 12 (1985) and HP 12 (1976)

Listed below are the low flows estimated for some rivers in Peninsular Malaysia derived using both procedures.

(i) Site: Sg. Lipis at 4⁰ 00 N, 101⁰ 40 E Catchment Area (AREA) = 130 km.² (50 sq. mile). Mean annual rainfall (MAR) = 2,200 mm. (86.6 in.) HP 12 (1985): Regions RC 3 and RE 3 HP 12 (1976): Region R3.
MAM = 1.675 × 10⁻¹⁶ (130)^{1.197} (2200)^{3.856}

= 0.439 cumecs

From HP 12 (1976) the characteristic value, v (the 1.5 year return period minimum flow) is: $V = 9.9 \times 10^{-5} (50)^{0.93} (86.6)^{2.05}$

= 35.28 cusecs (1.00 cumecs)

The low flows computed are as follows:

Return Period	7-day low flow, $Q_{7,T}$ (cumecs)					
(years)	HP 12 (1985)	HP 12 (1976)				
1.5	0.58	1.56				
5.0	0.31	0.87				
10.0	0.25	0.68				
20.0	0.21	0.56				

```
(ii) Site: Sg. Muda at DID station No. 6007415
Catchment area (AREA) = 1220 km<sup>2</sup> (476 sq. miles).
Mean annual rainfall (MAR) = 2145 mm (84 inches)
HP 12 (1985): Regions RC 1 and RE 1
HP 12 (1976): Region R3
MAM = 1.097 \times 10^{-8}(1220)^{1.092}(2145)^{1.663}
= 8.926 cumecs.
V = 9.9 \times 10^{-5}(476)^{0.93}(84)^{2.05}
= 272.5 cusecs (7.72 cumecs)
```

The low flows computed are as follows:

Return Period	7-day low flow, $Q_{7,T}$ (cumecs)					
(years)	HP 12 (1985)	HP 12 (1976)				
1.5	11.36	9.65				
5.0	6.75	3.83				
10.0	5.69	2.46				
20.0	5.04	1.73				

(iii) Site: Sg. Batang Padang at DID station No. 4112456 Catchment area (AREA) = 375 km.² (146 sq. miles). Mean annual rainfall (MAR) = 2800 mm (110 inches) HP 12 (1985): Region; RC 2 and RE 2 HP 12 (1976): Region; R2 MAM = $1.675 \times 10^{-10} (376)^{0.92} (2800)^{2.387}$ = 6.631 cumecs $V = 5.3 \times 10^{-2} (146)^{1.06} (110)^{0.56}$ = 145.1 cusecs (4.11 cumecs)

The low flows computed are as follows:

Return Period	7-day low flow, $Q_{7,T}$ (cumecs)				
(years)	HP 12 (1985)	HP 12 (1976)			
1.5	9.02	4.91			
5.0	4.82	2.69			
10.0	3.69	2.12			
20.0	2.91	1.74			

5.3 Comparison with other low flow studies in Peninsular Malaysia.

Scarf (1977) in his study "Water Resources for Irrigation of Upland Areas in South Kelantan" derived the low flow characteristics of several rivers in South Kelantan. The 30-day low flows for rivers in Pasir Puteh-Besut region estimated by Scarf are given in Table 5.1. As a comparison, the 30-day low flows for these rivers were also estimated using this procedure. All the rivers are located in RE region 1 and RC region 1. The results are tabulated in Table 5.2. and it shows that the values obtained using this procedure are fairly close to the values obtained by Scarf.

River	Tributary	Site	Area (km ²)		Average 30 con for reti	secutive day urn period 1:		20	Remarks
				1:2.33	1:5	1:10	1:50	1:100	Kernurks
Besut		Jerteh ⁽¹⁾	790	11.9	9.2	7.6	4.9	4.1	(1) Based on extremal
	Angga	Headworks	77	1.16	0.90	0.74	0.48	0.40	analyses of low flow records.
	Besut	Rantau Panjang ⁽²⁾	640	9.64	7.45	6.15	3.97	3.32	(2) Excludes flow from Sg.
	Pelagat	Rawang Panjang	57	0.86	0.66	0.55	0.35	0.30	Angga.
Yong		Pulau Lima ⁽³⁾	54	0.81	0.63	0.52	0.34	0.28	(3) Accurate estimation
	Yong	Bt. Yong	28	0.42	0.33	0.27	0.17	0.15	difficult because of continual padi usage and
	Gaal	Gaal ⁽³⁾	12	0.18	0.14	0.11	0.08	0.06	accuracy probably not better than $\pm 30\%$.
Rasau		Pasir Puteh	83	1.25	0.97	0.80	0.52	0.43	
	Taweh	Taweh	25	0.38	0.29	0.24	0.16	0.13	
	Jeram	Jeram	15	0.23	0.17	0.14	0.09	0.08	
	Telosan	Gong Kelih	13	0.20	0.15	0.13	0.08	0.07	
Semerak		Pasir Puteh ⁽³⁾	220	1.2	1.0	0.8	0.5	0.4	

TABLE 5.1: AVERAGE 30 CONSECUTIVE DAY LOW FLOW FOR RIVERS IN THE PASIR PUTEH—BESUTREGION SOURCE: SCARF (1977)

Į	River	Tributary	Site	Area (km²)	MAR (mm)	MAM (cumecs)		Average 30—day low flow for Return Period 1: T years (cumecs)		
}	Alver	Thouary	Juc	(Km)	(115111)	(02000)	1:2.33	1:5	1:10	1:50
Ī	Besut	1	Jerteh	790	3135	9.87	12.59	9.95	8.20	5.77
		Angga	Headworks	77	3250	0.87	1.15	0.89	0.77	ü.64
-		Besut	Rantau Panjang	640	3000	7.71	10.19	7.90	6.81	5.64
Í		Pelagat	Rawang Panjang	57	3200	0.61	0.81	0.63	0.54	0.45
	Yong	1	Pulau Lima	54	3150	0.56	0.74	0.58	0.50	0.41
		Yong	Bt. Yong	28	3000	0.25	0.33	0.26	0.22	0.18
		Gaal	Gaal	12	3000	0.10	0.13	0.10	0.09	0.07
	Rasau		Pasir Puteh	83	3050	0.85	1.13	0.87	0.75	0.62
		Taweh	Jeram	25	3000	0.22	0.30	0.23	0.20	0.16
		Jeram	Jeram	15	3100	0.14	0.18	0.14	0.12	0.10
		Telosan	Gong Kelih	13	3050	0.11	0.15	0.12	0.10	0.08
	Semerak	1	Pasir Puteh	220	3050	2.47	3.26	2.53	2.18	1.80

TABLE 5.2: THE MAM AND THE 30-DAY LOW FLOWS DERIVED USING THIS PROCEDURE

6. REFERENCES

- 1. Beable, M.E and Mc. Kerchar, A.I (1981) "New Zealand Flood Study" Water and Soil Technical Publication, No. 20.
- 2. Clark, R.T. (1973) "A Review of Some Mathematical Models used in Hydrology, with Observations on their Calibration and Use" Journal of Hydrology, No. 19.
- 3. Cunnane, C. (1978) "Unbiased Plotting Position—A Review" Journal of Hydrology, Vol. 37.
- 4. Dalyrymple, T. (1960) "Flood Frequency Analysis" USGS Water Supply Paper 1545-A.
- 5. DID (1976) "Hydrology Data, Rainfall Record for Peninsular Malaysia 1970-1975".
- 6. Dryton, R.S. Kidd, C.H.R., Mandeville, A.N. and Miller, J.B. (1980) "A Regional Analysis of River Floods and Low Flows in Malawi". Institute of Hydrology, Wallingford.
- 7. Goh, K.S. (1974) "Hydrological Regions of Peninsular Malaysia" Water Resources Publication No. 2, DID.
- 8. Gray, D.M. (1964) "Physiographic Characteristics and the Runoff Pattern". National Research Council of Canada, Proc. Hydrological Syposium, No. 4, pg. 166.
- 9. Gumbel, E,J. (1954) "Statistical Theory of Droughts". Proc. A.S.C.E., Hydraulics Div. May 1954.
- 10. Jenkinson, A.F. (1969) "Statistics of Extremes in Estimation of Maximum Floods", Chapter 5, WMO, Technical Report No. 98.
- 11. Joseph, S.E. (1970) "Probability Distribution of Annual Droughts" Proc. A.S.C.E. IR 4, 1970. 1970.
- 12. Kite, C.W. (1976) "Frequency and Risk Analysis in Hydrology" Water Resources Publication, Fort Collins, Colorado, USA.
- 13. Matalas, N.C. (1963) "Probability Distribution of Low Flows" U.S.G.S. Professional Paper 434-A.
- 14. Nash, J.E. and Shaw, B.L. (1965) "Flood Frequency as a Function of Catchment Characteristics". River Flood Hydrology, Proceedings of Symposium Institude of Civil Engineers, London.
- 15. Natural Environment Research Council (NERC) (1975) "Flood Study Reports" in 5 volumes.
- 16. Riggs, H.C. (1973) "Regional Analysis of Streamflow characteristics" Technique of Water Resources Investigations of the U.S. Geological survey, Book 4 chap. B3.
- 17. Rosenbrock, H.H. (1960) "An Automatic Method of Finding the Greatest or Least Value of a Function" The Computer Journal, Vol. 3.
- 18. Scarf, F. (1977) "Water Resources for Irrigation of Upland Crops in South Kelantan" WRP No. 8.
- 19. Taylor, M.A.W. and Goh, K.S. (1976) "Magnitude and Frequency of Low Flows in Peninsular Malaysia". Hydrological Procedure No. 12, Drainage and Irrigation Department, Malaysia.
- 20. Teh S.K. and Kelsom (1982) "Average Annual and Montly Surface Water Resources of Peninsular Malaysia" WRP No. 1.

APPENDIX I

The general extreme value distribution

The pdf of the general extreme value (GEV) distribution may be written as:

 $f(x) = (1/x) [1-k(x-u)/x]^{1/k-1} e^{-[1-k (x-u)/x] - 1/k}$

where u = location parameter

x = scale parameter

k = shape parameter

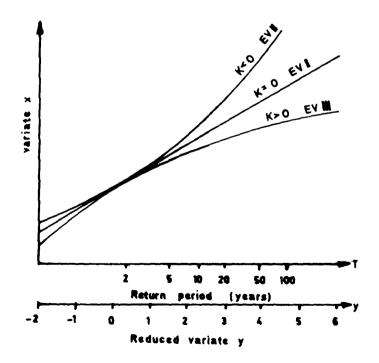
The corresponding cdf is given by $f(x) = e^{-(1-k[x-u]/x)} \frac{1}{k}$

There is a family of GEV distributions, each characterized by the value of the shape parameter k. The family can be divided into three classes, corresponding to different ranges of the k value.

- (i) k = O corresponds to the type I extreme value distribution (EVI)
- (ii) k < O corresponds to the type II extreme value distribution (EVII)
- (iii) k > O corresponds to the type III extreme value distribution (EVIII)

FIG I.1 shows how the three types of extreme value distributions are related to one another.

As can be seen from Fig. I.1, EVIII has a lower bound but no upper bound, EVIII has a upper bound but no lower bound, while EVI is a straight line and unbounded. EVI and EVII are usually used for the analysis of flood flow while EVIII is used for low flow frequency analysis.


Using the Jenkinson equation, the low flow for return period T, Q_T is given by:

 $Q_T = u + wx$

where $W = 1 [I - exp(-ky_T)] = modified frequency factor.$

Y = reduced variate at return period T

X = scale parameter

FIG. I-1: EXTREME VALUE DISTRIBUTIONS

APPENDIX II

List of Catchments and Catchment Characteristics

2816441 Sg. Lang 2917442 Sg. Lang 2917442 Sg. Lang 2917442 Sg. Lang 2918443 Sg. Sem 2920432 Sg. Tria 3022431 Sg. Tria 3116433 Sg. Gon 3116434 Sg. Batt 3414421 Sg. Sela 3424411 Sg. Pah 3519426 Sg. Ben 3615412 Sg. Ben 3615412 Sg. Ben 3813411 Sg. Ben 3813414 Sg. Tro 3814413 Sg. Sun 3911457 Sg. Sun 3911457 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat 4112456 Sg. Bat Padang 4121413 4121413 Sg. Jela 4121413 Sg. Jela	River	River		Length of	Catchment Area	Catchment Mean Annual Bainfall	Observed MAM (cumecs)	Predicted MAM (cumecs) _	Reg	ion	Upstream water Extraction
22224432 Sg. Kesa 2237471 Sg. Leng 2322415 Sg. Duri Tunggal 2519421 Sg. Ling 2519421 Sg. Ling 2528414 Sg. Sega 2816441 Sg. Lang 2917442 Sg. Lang 2917442 Sg. Lang 2917442 Sg. Lang 2918443 Sg. Sem 2920432 Sg. Tria 3022431 Sg. Tria 3012433 Sg. Gon 3116433 Sg. Batu 3414421 Sg. Sela 3414421 Sg. Ben 3615412 Sg. Ben 3615412 Sg. Ben 3813411 Sg. Sun 3911457 Sg. Sun 3911457 Sg. Sun 4012452 Sg. Batu 4112456 Sg. Batu 4112456 Sg. Batu 4112456 Sg. Batu 4112456 Sg. Batu 4121413 Sg. Jela 4121413 Sg. Jela				records (years)	(km^2)	Rainfall (mm)	(cumecs)	(cumets) -	RE	RC	
2237471 Sg. Leng 2322415 Sg. Duri Tunggal 2519421 Sg. Ling 2519421 Sg. Ling 2519421 Sg. Lang 2519421 Sg. Lang 2917442 Sg. Lang 2917442 Sg. Lang 2917442 Sg. Lang 2917442 Sg. Tria 3022431 Sg. Tria 3022431 Sg. Tria 3022431 Sg. Tria 3116433 Sg. Gon 3116434 Sg. Bati 3414421 Sg. Bati 3519426 Sg. Ben 3615412 Sg. Ben 3615412 Sg. Ben 3813411 Sg. Sun 3813411 Sg. Sun 3911457 Sg. Sun 3913456 Sg. Sun 4012452 Sg. Bati 4019462 Sg. Lip 4111455 Sg. Bati Padang 4112456 Sg. Jati 4112457 Sg. Jati 4121413	Johor	Johor R P	antau anjang	19	1130	2455	8.791	8.893	3	1	Negligible
22237471 Sg. Leng 2322415 Sg. Duri Tunggal 2519421 Sg. Ling 2519421 Sg. Ling 2519421 Sg. Lang 2917442 Sg. Tria 3022431 Sg. Tria 3022431 Sg. Tria 3022431 Sg. Tria 3116433 Sg. Gon 3116434 Sg. Batu 3414421 Sg. Sela 3414421 Sg. Ben 3615412 Sg. Ben 3615412 Sg. Ben 3813411 Sg. Sun 3911457 Sg. Sun 3911457 Sg. Sun 4012452 Sg. Batu 4019462 Sg. Lip 4111455 Sg. Batu Padang A112456 4121413 Sg. Jela 4121413 Sg. Jela	Kesang	Kesang C	hin Chin	20	161	1875	0.257	0.306	3	3	Considerable
Tunggal 2519421 Sg. Ling 2528414 Sg. Sega 2816441 Sg. Lang 2917442 Sg. Lang 2917442 Sg. Lang 2918443 Sg. Sem 2920432 Sg. Tria 3022431 Sg. Tria 30122431 Sg. Tria 3116433 Sg. Gon 3116434 Sg. Batu 3414421 Sg. Sela 3414421 Sg. Ben 3615412 Sg. Ben 3615412 Sg. Ben 3813414 Sg. Tro 3814413 Sg. Slin 3814413 Sg. Slin 3911457 Sg. Sun 4012452 Sg. Batu 4019462 Sg. Lip 4111455 Sg. Batu 4112456 Sg. Batu 4112456 Sg. Jela 4112456 Sg. Jela 4112456 Sg. Jela	-	Lenggor B K	t. 42 Iluang- Iersing	17	207	2815	1.581	1.978	3	3	Negligible
2528414 Sg. Sega 2816441 Sg. Lang 2917442 Sg. Lang 2917442 Sg. Lang 2918443 Sg. Sem 2920432 Sg. Tria 3022431 Sg. Tria 3116433 Sg. Gon 3116434 Sg. Batt 3414421 Sg. Sela 3424411 Sg. Paha 3519426 Sg. Ben 3615412 Sg. Ben 3813411 Sg. Ber 3813413 Sg. Slin 3814415 Sg. Slin 3911457 Sg. Sun 4012452 Sg. Bat 4112456 Sg. Bat 4112456 Sg. Bat 4112456 Sg. Bat 4112456 Sg. Jela			t. 11 Air Resam	8	73	1900	0.104	0.124	3	3	Nil
2816441 Sg. Lang 2917442 Sg. Lang 2917442 Sg. Lang 2918443 Sg. Sem 2920432 Sg. Tria 3022431 Sg. Tria 3022431 Sg. Tria 3116433 Sg. Gon 3116434 Sg. Batt 3414421 Sg. Sela 3424411 Sg. Pah 3519426 Sg. Ben 3615412 Sg. Ben 3615412 Sg. Ben 3813414 Sg. Tro 3813414 Sg. Tro 3814413 Sg. Sin 3911457 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat 4112456 Sg. Bat 4112456 Sg. Bat 4121413 Sg. Jela 4121413 Sg. Jela	Linggi	Linggi S	ua Betong	32	523	2175	3.720	2.218	3	3	Some
2816441 Sg. Lang 2917442 Sg. Sem 2918443 Sg. Sem 2920432 Sg. Tria 3022431 Sg. Tria 3012431 Sg. Tria 3116433 Sg. Gon 3116434 Sg. Batu 3414421 Sg. Sela 3424411 Sg. Pah 3519426 Sg. Ber 3615412 Sg. Ber 3813414 Sg. Tro 3813414 Sg. Tro 3814415 Sg. Sun 3911457 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat 9201455 Sg. Bat 4112456 Sg. Bat 9313456 Sg. Lip 4112456 Sg. Bat 93 Sg. Jela 4112456 Sg. Jela 4121413 Sg. Jela 4121413 Sg. Jela	-	-	egamat	11	658	1990	8.417	2.979	3	3	Considerable
2917442 Sg. Lang 2918443 Sg. Sem 2918443 Sg. Sem 2920432 Sg. Tria 3022431 Sg. Tria 3012431 Sg. Tria 3116433 Sg. Gon 3116434 Sg. Batt 3116434 Sg. Batt 3414421 Sg. Sela 3424411 Sg. Paha 3519426 Sg. Ben 3615412 Sg. Ben 3813411 Sg. Ben 3813411 Sg. Slin 3814413 Sg. Slin 3911457 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat 4112456 Sg. Bat 4112456 Sg. Bat 4112456 Sg. Bat 4121413 Sg. Jela 4121413 Sg. Jela	-	•	Dengkil	20	1240	2455	10.990	9.877	3	3	Considerable
2918443 Sg. Sem 2920432 Sg. Tria 3022431 Sg. Tria 3116433 Sg. Tria 3116433 Sg. Tria 3116434 Sg. Batt 3414421 Sg. Sela 3414421 Sg. Sela 3424411 Sg. Paha 3519426 Sg. Ben 3615412 Sg. Ber 3813414 Sg. Tro 3814413 Sg. Slin 3814415 Sg. Slin 3911457 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat 4112456 Sg. Bat 4112456 Sg. Bat 4121413 Sg. Jela 411464 Sg. Ka	-	•	Cajang	21	380	2675	6.364	6.025	2	2	Considerable
2920432 Sg. Tria 3022431 Sg. Tria 3116433 Sg. Tria 3116433 Sg. Tria 3116433 Sg. Gon 3116434 Sg. Batu 3116434 Sg. Batu 3414421 Sg. Sela 3424411 Sg. Paha 3519426 Sg. Ben 3615412 Sg. Ben 3813411 Sg. Ben 3813411 Sg. Ben 3813413 Sg. Slin 3814415 Sg. Slin 3911457 Sg. Sun 4012452 Sg. Bat 4019462 Sg. Lip 4111455 Sg. Bat Padang 4112456 Sg. Jela 4121413 Sg. Jela 4121413 Sg. Jela 4311464 Sg. Ka	0	0	emenyih	27	210	2565	3.616	3.158	2	2	Nil
3022431 Sg. Tria 3116433 Sg. Gon 3116434 Sg. Batt 3414421 Sg. Sela 3414421 Sg. Sela 3424411 Sg. Pah 3519426 Sg. Ben 3615412 Sg. Ben 3813411 Sg. Ber 3813411 Sg. Ber 3813414 Sg. Tro 3814415 Sg. Slin 3911457 Sg. Sun 3913456 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat 4112456 Sg. Bat 4112456 Sg. Bat 4121413 Sg. Jela 4311464 Sg. Ka	-	2	kg. Chenor	22	228	1875	1.305	1.612	2	3	Some
3116433 Sg. Gon 3116434 Sg. Batt 3414421 Sg. Sela 3414421 Sg. Sela 3414421 Sg. Sela 3424411 Sg. Paha 3519426 Sg. Ben 3615412 Sg. Ben 3813411 Sg. Ben 3813411 Sg. Ben 3813411 Sg. Ben 3813412 Sg. Ben 3814413 Sg. Slin 3911457 Sg. Sun 3913456 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat Padang 4112456 Sg. Jela 4121413 Sg. Jela 4311464 Sg. Ka	-	e	untai	25	€-3÷ 904	2200	7.447	8.387	2	3	Some
3116434 Sg. Batt 3414421 Sg. Sela 3424411 Sg. Pah 3519426 Sg. Ben 3615412 Sg. Ber 3813411 Sg. Ber 3813411 Sg. Ber 3813411 Sg. Ber 3813413 Sg. Slin 3814415 Sg. Slin 3911457 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat Padang 4112456 Sg. Jela 4311464 Sg. Ka		8	In. Pekeliling	21	122	2600	1.304	1.979	2	2	Negligible
3414421 Sg. Sela 3424411 Sg. Pah. 3519426 Sg. Ben 3615412 Sg. Ber 3813411 Sg. Ber 3813411 Sg. Ber 3813411 Sg. Ber 3813411 Sg. Ber 3813413 Sg. Ber 3813414 Sg. Tro 3814413 Sg. Slin 3911457 Sg. Sun 4012452 Sg. Sun 4019462 Sg. Lip 4111455 Sg. Bat Padang 4112456 Sg. Jela 4112443 Sg. Jela 4311464 Sg. Ka			Sentol	14	145	2625	1.955	2.373	2	2	Negligible
3519426 Sg. Ben 3615412 Sg. Ber 3813411 Sg. Tro 3814413 Sg. Slin 3814415 Sg. Bil 3911457 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat Padang 4112456 Sg. Bat 4121413 Sg. Jela 4311464 Sg. Ka		Selangor I	Rantau Panjang	32	1450	2680	17.907	20.752	2	1	Negligible
3519426 Sg. Ben 3615412 Sg. Ber 3813411 Sg. Tro 3814413 Sg. Slin 3814415 Sg. Bil 3911457 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat Padang 4112456 Sg. Bat Padang 4121413 Sg. Jela 4311464 Sg. Ka	Pahang	Pahang 7	Temerloh	16	19000	2250	133.534	179.742	3	3	Negligible
3813411 Sg. Ber 3813414 Sg. Tro 3813413 Sg. Slin 3814413 Sg. Slin 3814415 Sg. Slin 3911457 Sg. Sun 3913456 Sg. Sun 3913456 Sg. Sun 4019462 Sg. Lip 4111455 Sg. Bat Padang 4112456 Sg. Jel: 4121413 Sg. Jel: 4311464 Sg. Ka	•	Bentong J	am. Kuala Marong	11	241	2375	4.130	2.983	2	3	Nil
3813414 Sg. Tro 3814413 Sg. Slin 3814415 Sg. Bil 3911457 Sg. Sun 3913456 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat Padang 4112456 Sg. Bat 4121413 Sg. Jel 4311464 Sg. Ka	Bernam		Γanjong ∕Ialim	30	186	2750	3.426	3.335	2	1	Negligible
3814413 Sg. Slin 3814415 Sg. Bil 3911457 Sg. Sun 3913456 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat Padang 4112456 Sg. Bat 4121413 Sg. Jela 4311464 Sg. Ka	Bernam		lambatan SKC	15	1090	2770	17.287	17.268	2	1	Negligible
3814415 Sg. Bil 3911457 Sg. Sun 3913456 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat Padang 4112456 Sg. Bat 4121413 Sg. Jela 4311464 Sg. Ka	Trolak	Trolak	Frolak	26	66	2800	1.205	1.338	2	2	Negligible
 3814415 Sg. Bil 3911457 Sg. Sun 3913456 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat Padang 4112456 Sg. Bat Padang 4121413 Sg. Jela 4311464 Sg. Ka 	Slim	Slim I	Kg. Slim	17	314	2610	4.690	4.767	2	2	Nil
 3913456 Sg. Sun 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat Padang 4112456 Sg. Bat Padang 4121413 Sg. Jel 4311464 Sg. Ka 		Bil	Iln. Tg. Malim- Slim	33	41	2665	0.937	0.769	2	1	Negligible
 4012452 Sg. Bid 4019462 Sg. Lip 4111455 Sg. Bat Padang 4112456 Sg. Bat Padang 4121413 Sg. Jels 4311464 Sg. Ka 	Sungkai	- 0	Iln. Anson- Kampar	24	479		6.789		2	1	Negligible
4019462 Sg. Lip 4111455 Sg. Bat Padang 4112456 Sg. Bat Padang 4121413 Sg. Jel 4311464 Sg. Ka	Sungkai	Sungkai	Sungkai	30	289		4,985		2	2	Negligible
 4111455 Sg. Bat Padang 4112456 Sg. Bat Padang 4121413 Sg. Jels 4311464 Sg. Ka 	Bidor		Bt. 18, Jln. Anson	30	339		5.641		2	2	Negligible
Padang 4112456 Sg. Bat Padang 4121413 Sg. Jel 4311464 Sg. Ka	Lipis	Lipis	Benta	15	1670		13.795			3	Some
Padang 4121413 Sg. Jel: 4311464 Sg. Ka			Tg. Keramat	12	445	5 2900	10.18	8.419	2	2	Diversion of water into river
4311464 Sg. Ka			Tapah	27	370	5 2800	8.965	6.630	2	2	Diversion of water into river
-	. Jelai		Stn. Tele Jeram Bungor	8	732	0 2390	75.000	74.996	3	3	Negligible
-	. Kampar		Kg. Lanjut	34	432	2 2525	2.449	5.887	2	2	Negligible
4324454 Sg. Ter		. Tembeling	Stn. Tele K. Tahan	11	270		17.068	3 15.530	3	3	Negligible
4410461 Sg. Kii	. Kinta		Batu Gajah	24	105	4 2305	12.256	5 10.797	1	2	Some
4410465 Sg. Ra			Ldg. Kinta	24	25	1 2375	3.573	3 3.097	2	2	Negligible

List of Catchments and Catchment Characteristics—(Continued)

Station No.	River	Station	Length of	Catchment Area	Catchment Mean Annual	Observed MAM	Predicted MAM	Reg	gion	Upstream water
<u> </u>			records (years)	(<i>km</i> ²)	Rainfall (mm)	(cumecs)	(cumecs) _	RE	RC	_ Extraction
4510462	Sg. Kinta	Ipoh	21	313	2375	2.361	2.384	1	2	Negligible
4610466	Sg. Pari	Jln. Silibin Ipoh	15	245	2315	2.109	1.748	1	1	Some
4611463	Sg. Kinta	Tg. Rambutan	33	246	2305	1.640	1.750	1	2	Negligible
4809443	Sg. Perak	Stn. Tele Jam. Iskandar	26	7770	2120	71.878	66.110	1	1	Considerable
4907422	Sg. Kurau	Bt. 14, Jln. Taiping	35	80	3000	0.721	0.796	1	1	Some
4911445	Sg. Plus	Kg. Lintang	26	1090	2300	11.277	8.825	1	1	Nil
5007421	Sg. Kurau	Pondok Tanjong	34	337	3150	3.141	4.132	1	1	Some
5007423	Sg. Ara	Bt. 20, Jln. Taiping	28	140	3000	2.195	1.460	1	1	Some
5106431	Sg. Krian	Dusun Rimau	14	694	3000	9.997	8.385	1	1	Negligible
5106433	Sg. Ijok	Titi Ijok	15	216	3210	1.793	2.624	1	1	Considerable
5130432	Sg. Terengganu	Kg. Tanggol	18	3340	2690	46.248	38.888	1	1	Negligible
5206432	Sg. Krian	Selama	15	629	2930	11.546	7.270	1	1	Negligible
5402421	Sg. Kulim	Ara Kuda	26	129	2800	2.558	1.195	1	1	Nil
5505412	Sg. Muda	Ladang Victoria	9	4010	2300	22.447	36.593	1	1	Considerable
5506416	Sg. Sedim	Merbau Pulas	25	440	2835	4.601	4.641	1	1	Negligible
5506417	Sg. Karangan	Titi Karangan	11	83	3100	1.271	0.871	1	1	Nil
5721442	Sg. Kelantan	Stn. Tele Guillemard	24	11900	2430	151.249	131.487	1	1	Negligible
5724411	Sg. Besut	Jambatan Jerteh	20	787	3135	9.868	10.350	1	1	Negligible
5806414	Sg. Muda	Jeniang	22	1710	2185	11.218	13.250	1	1	Considerable
019411	Sg. Golok	Rantau Panjang	17	761	2875	6.022	8.639	1	4	Negligible
022421	Sg. Kemasin	Peringat	17	48	2875	0.321	0.423	1	4	Nil

Appendix III

Results of Individual Station Frequency Analysis

STATION	DURATION			Q	D, T (CUMEC	S)		
No.	(D) (DAYS)	T = 1.1	<i>T</i> = 1.5	T = 2.33	T = 5.0	T = 10.0	T = 20.0	T = 50.0
1737451	1	17.610	9.6788	6.5601	4.7045	4.0946	3.8286	3.6841
	4	19.763	11.150	7.5997	5.3824	4.6130	4.2612	4.0601
	7	20.977	11.978	8.2178	5.8357	4.9955	4.6062	4.3802
	30	30.531	15.358	11.085	9.2742	8.8711	8.7448	8.6966
2224432	1	.53116	.28640	.18045	.11048	.08499	.07252	.06516
	4	.69037	.35326	.21161	.12181	.08980	.07507	.06629
	7	.62040	.32606	.20142	.12096	.09235	.07875	.07082
	30	.87394	.49830	.30963	.16431	.10085	.06516	.07082
2237471	1	2.2824	1.8453	1.5125	1.1139	.83229	.59377	.32521
223/4/1	4	2.3575	1.9802	1.6649	1.2462	.91671	.60992	.22606
	7	2.5397	2.1187	1.7725	1.3215	.97337	.65439	.26289
	30	4.1065	3.0578	2.4467	1.8983	1.6139	1.4300	1.2765
2322415	1	.20085	.12493	.08640	.05609	.04278	.03513	.02975
	4	.22748	.14703	.10368	.06799	.05099	.04079	.03314
	7	.24448	.16686	.12040	.07734	.05439	.03909	.02606
	30	.43938	.31076	.24221	.18612	.15977	.14419	.13229
2519421	1	5.5331	4.2598	3.4252	2.5754	2.0703	1.7025	1.3530
	4	6.0023	4.5856	3.6626	2.7292	2.1785	1.7802	1.4037
	7	6.5632	4.8802	3.8363	2.8346	2.2762	1.8918	1.5479
	30	9.8569	7.2249	5.5555	3.9147	2.9765	2.3156	1.7096
2528414	1	11.980	9.9246	8.1904	5.8694	4.0244	2.2924	.10340
	4	12.442	10.343	8.7901	6.9904	5.7612	4.7510	3.6513
	7	12.563	10.534	9.0136	7.2244	5.9830	4.9490	3.8059
	30	13.521	11.575	10.031	8.0969	6.6643	5.3994	3.9082
2816441	1	16.543	12.415	9.9663	7.7246	6.5374	5.7558	5.0901
	4	17.308	13.243	10.766	8.4337	7.1601	6.2986	5.5431
	7	18.062	13.997	11.452	8.9867	7.5977	6.6331	5.7609
	30	22.467	18.229	15.164	11.695	9.3856	7.5297	5.5586
2917442	1	9.7578	7.2867	5.7473	4.2635	3.4320	2.8572	2.3405
	4	10.152	7.7997	6.2255	4.5861	3.5881	2.8465	2.1241
	7	10.790	8.1759	6.5028	4.8425	3.8830	3.2008	2.5691
	30	13.858	9.5241	7.5020	6.0649	5.4890	5.1907	4.9958
2918443	1	5.8504	4.3334	3.2958	2.1898	1.4994	.97507	.45184
	4	6.3521	4.9484	3.9164	2.7275	1.9210	1.2620	.54929
	7	6.6592	5.1932	4.1190	2.8856	2.0521	1.3734	.64193
	30	7.5802	6.0431	4.9312	3.6720	2.8334	2.1595	<u>1.443</u> 3
2920432	1	2.1912	1.4422	1.0768	.80482	.69008	.62805	.58527
	4	2.2907	1.5091	1.1535	.90708	.81133	.76289	.73201
	7	2.4218	1.6224	1.2357	.95014	.83088	.76686	.72323
	30	3.1564	2.3108	1.8068	1.3433	1.0966	.93314	.79348
3022431	1	10.469	8.7609	7.3425	5.4762	4.0193	2.6728	1.0011
	4	10.409	9.2249	7.8360	5.9870	4.5255	3.1601	1.4445
	7	11.524	9.7178	8.2428	6.3377	4.8793	3.5547	1.9414
	30	14.8	12.478	10.679	8.4841	6.9023	5.5397	3.9759
3116433	1	2.2235	1.4966	1.0969	.75921	.59547	.49575	.41728
0110.00	4	2.3657	1.6292	1.2170	.86204	.68612	.57705	.48980
	7	2.4459	1.7343	1.3263	.96601	.78272	.66629	.57054
	30	3.0793	2.2975	1.8025	1.3170	1.0399	.84504	.66686
3116434	1	2.9941	2.3552	1.8586	1.2510	.81133	.43144	_
5110.04	4	3.3306	2.6212	2.0586	1.3547	.83371	.37394	
	7	3.5960	2.8130	2.2008	1.4470	.89802	.42068	—
	30	4.3688	3.4915	2.7909	1.9082	1.2496	.66487	

APPENDIX III—(Continued)

Results of Individual Station Frequency Analysis—(Continued)

STATION	DURATION (D)			Ç	$Q_{D,T}$ (CUME)	CS)		
No.	(DAYS)	T = 1.1	T = 1.5	T = 2.33	T = 5.0	T = 10.0	T = 20.0	T = 50.0
3414421	1	23.015	19.878	17.482	14.607	12.569	10.840	8.8878
	4	23.274	20.699	18.373	15.015	12.125	9.2170	
	7	23.966	21.270	18.883	15.514	12.683	9.8924	5.2425
	30	32.466	26.580	22.920	19.397	17.427		6.1663
3424411	1	256.24	157.21	107.12			16.067	14.846
	4 ·	266.08	174.67	107.12	68.399 76.525	51.356	41.797	34.967
	7	276.46	174.07		76.525	53.247	38.492	26.437
	30	390.75	217.99	127.64	82.896	61.142	47.845	37.404
3519426				154.19	118.61	107.74	103.29	101.03
5519420	1	6.5116	4.7448	3.7079	2.7703	2.2799	1.9606	1.6921
	4	6.7020	5.0419	3.9867	2.9476	2.3516	1.9312	1.5445
	7	7.0068	5.2215	4.1164	3.0589	2.4711	2.0671	1.7068
	30	8.0235	6.1411	4.9428	3.7598	3.0802	2.5997	2.1572
3615412	- 1	5.0062	3.9329	3.1994	2.4190	1.9329	1.5637	1.1960
	4	5.3326	4.1989	3.4864	2.7929	2.4003	2.1266	1.8779
	7	5.5623	4.4711	3.7773	3.0938	2.7014	2.4246	2.1703
	30	6.7816	5.5079	4.6385	3.7136	3.1377	2.7011	2.2663
3813411	1	23.025	19.384	16.672	13.506	11.327	9.5235	
	4	23.924	19.821	16.956	13.834	11.839	9.3233	7.5450
	7	25.122	20.490	17.428	14.280	12.392		8.7110
	30	32.545	25.1	20.991	17.507		11.004	9.6720
3813414	1	2.1059	1.3751	.98980		15.811	14.772	13.955
	4	2.1039			.67847	.53484	.45099	.38810
	7	2.2839	1.5416	1.1181	.74618	.55807	.43881	.34164
	30		1.5955	1.1686	.80255	.62181	.50992	.42096
_	50	2.6629	1.9028	1.4431	1.0133	.78074	.62465	.48867
3814413	1	8.1201	5.6870	4.1331	2.5943	1.7071	1.0779	.49660
	4	8.2853	5.9153	4.3708	2.8079	1.8856	1.2181	.58697
	7	8.5340	6.1057	4.5249	2.9278	1.9864	1.3062	.66402
	30	9.6569	7.7414	6.2637	4.4703	3.1847	2.0819	.82295
3814415	1	1.3436	1.0459	.86147	.68499	.58669	.51926	.45892
	4	1.3870	1.0918	.90822	.73173	.63314	.56516	.43892
	7	1.4572	1.1263	.93173	.75439	.66147	.60057	
	30	1.5731	1.2677	1.0864	.92040	.83258	.77450	.54929 .72521
3911457	1	11.090	5.8635	5.0751	4.8943			
	4	11.454	6.2388	5.4649		4.8751	4.8717	4.8711
	7	12.190	6.9686	6.1244	5.2901	5.2717	5.2686	5.2680
	30	16.760	10.544	8.4309	5.9173 7.3479	5.8932	5.8890	5.8878
2012450						7.0476	6.9343	6.8816
3913458	1	7.4119	5.7504	4.6255	3.4405	2.7096	2.1603	1.6190
	4	7.8059	6.0422	4.9156	3.8006	3.1578	2.7020	2.2807
	7	8.3765	6.4496	5.2578	4.1178	3.4847	3.0499	2.6623
	30	9.8575	7.7898	6.5340	5.3561	4.7153	4.2833	3.9059
4012453	1	8.7405	6.7462	5.2941	3.6388	2.5283	1.6300	.66856
	4	8.9935	7.1102	5.6768	3.9618	2.7510	1.7266	.57394
	7	9.2771	7.4405	6.0031	4.2309	2.9391	1.8150	.51048
	30	11.723	9.7816	8.1717	6.0572	4.4099	2.8898	1.0062
4019462	1	22.346	16.249	12.399				
	4	22.340	10.249		8.6309	6.4861	4.9824	3.6096
	· 7	25.047		12.903	8.9147	6.7116	5.2071	3.8725
	30	23.047 29.416	17.644	13.198	9.0751	6.8606	5.3847	4.1102
4111455			21.761	16.844	11.948	9.1057	7.0793	5.1949
4111455	1	13.857	11.626	9.8966	7.7870	6.2663	4.9561	3.4524
	4	15.654	13.141	11.349	9.3521	8.0445	7.0088	5.9261
	7	17.223	14.315	12.307	10.146	8.7824	7.7368	6.6830
	30	19.435	16.020	14.026	12.230	11.296	10.691	10.184

APPENDIX III—(Continued)

Results of Individual Station Frequency Analysis—(Continued)

STATION	DURATION			Q	$_{D,T}$ (CUMEC	S)		
No.	(D) (DAYS)	T = 1.1	T = 1.5	T = 2.33	T=5.0	T = 10.0	T = 20.0	T = 50.0
		14.054	10,440	0.0070	5 ((()	4 2015	2 2770	2 51/1
4112456	1	14.256	10.440	8.0278	5.6666	4.3215	3.3779	2.5161
	4	15.175	11.288	8.7921	6.3079	4.8669	3.8399	2.8853
	7	16.063	12.003	9.3870	6.7725	5.2496	4.1601	3.1433
	30	18.561	14.242	11_350	8.3380	6.5034	5.1391	3.8096
4121413	1	88.908	77.712	68.085	54.931	44.243	34.011	20.802
	4	95.684	83.346	72.979	59.165	48.236	38.016	25.162
	7	102.93	86.496	74.132	59.523	49.345	40.830	31.378
	30	131.78	103.09	84.461	65.677	54.633	46.670	39.171
4311464	1	4.3076	2.8490	2.0694	1.4303	1.1303	.95241	.81728
	4	4.9575	3.2813	2.4110	1.7201	1.4065	1.2261	1.0935
	7	5.5003	3.7975	2.8470	2.0320	1.6300	1.3810	1.1830
	30	8.5530	6.0042	4.6796	3.6258	3.1470	2.8708	2.6677
4324454	1	43.054	18.310	11.097	7.9343	7.2006	6.9632	6.8694
	4	44.885	19.217	12.098	9.1278	8.4776	8.2773	8.2023
	7	48.440	23.501	14.790	10.200	8.8861	8.3771	8.1331
	30	60.918	32.816	21.850	15.377	13.268	12.356	11.863
4410461	1	20.701	13.386	9.9827	7.5714	6.6079	6.1108	5.7864
	4	22.293	14.263	10.537	7.9045	6.8561	6.3164	5.9654
	7	23.569	14.912	11.004	8.3204	7.2850	6.7666	6.4394
	30	30.425	19.592	14.464	10.766	9.2589	8.4677	7.9419
4410465	. 1	6.4034	4.2238	2.9731	1.8683	1.3054	.94674	.65269
1120100	4	7.1269	4:6388	3.2127	1.9550	1.3150	.90822	.57479
	7	7.8017	5.0493	3.4595	2.0453	1.3193	.85411	.46941
	30	10.137	6.3890	4.3646	2.6875	1.8907	1.4133	1.0467
4510462	1	4.1278	2.7773	1.9938	1.2938	.93286	.70057	.50737
1010102	4	4.1759	2.8666	2.1082	1.4312	1.0824	.85836	.67252
	7	4.3071	2.9586	2.1938	1.5269	1.1918	.98102	.81020
	30	6.3465	4.0700	2.9074	1.9994	1.5952	1.3663	1.2008
4610466	1	4.2975	2.1295	1.5309	1.2822	1.2280	1.2116	1.2054
4010400	4	4.4130	2.3025	1.6555	1.2622	1.2233	1.2581	1.2479
	4 7	4.4130	2.5025	1.8105	1.3367	1.2833	1.2381	1.2683
	30	4.0147 5.7666	3.3898	2.4824	1.4348	1.3283	1.7221	1.6850
4611462		3.0357	1.9360	1.3246	.80227	.54589	.38754	.26204
4611463	1	3.2011	2.1320	1.5059	.94108	.54565	.38734 .45496	.20204
	4							
	7 30	3.4422 5.0068	2.3266 3.3088	1.6697 2.3586	1.0737 1.5416	.76091 1.1374	.55666 .88640	.38414 .68612
4809443	1	107.18	81.645	65.572	49.904	41.020	34.813	29.168
	4	116.52	87.974	72.050	58.400	51.669	47.503	44.189
	7 30	123.59 148.53	92.712 117.67	76.577 95.365	63.671 70.151	57.773 53.385	54.356 39.925	51.825 25.645
4007422			-					
4907422	1	1.2986	.82096	.57649	.38499	.29972	.25127	.21615
	4	1.4496	.91331	.64476	.43966	.35042	.30085	.26572
•	7 30	1.5728 2.3660	.99773 1.5977	.70793 1.1839	.48442 .84164	.38640 .67960	.33173 .58272	.29263 .50850
4911445	1	16.742	12.868	10.362	7.8459	6.3734	5.3159	4.3241
	4	17.539	13.665	11.144	8.5949	7.0921	6.0057	4.9799
	7	18.249	14.454	11.907	9.2465	7.6212	6.4096	5.2258
	30	24.786	19.034	15.410	11.873	9.8663	8.4623	7.1844

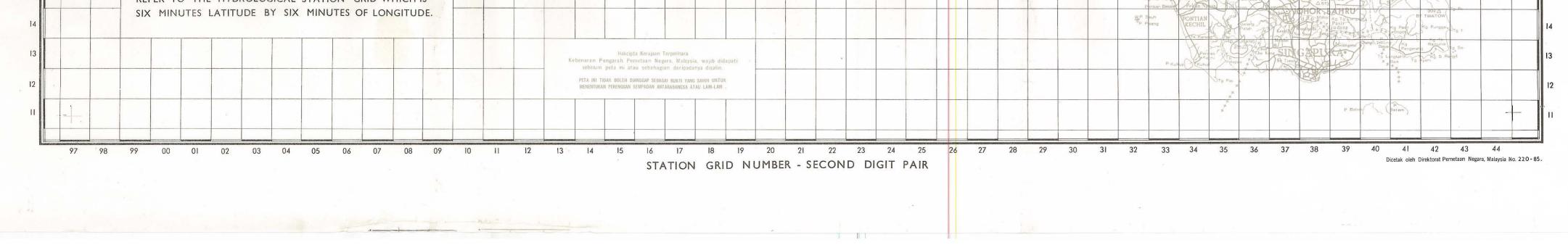
APPENDIX III-(Continued)

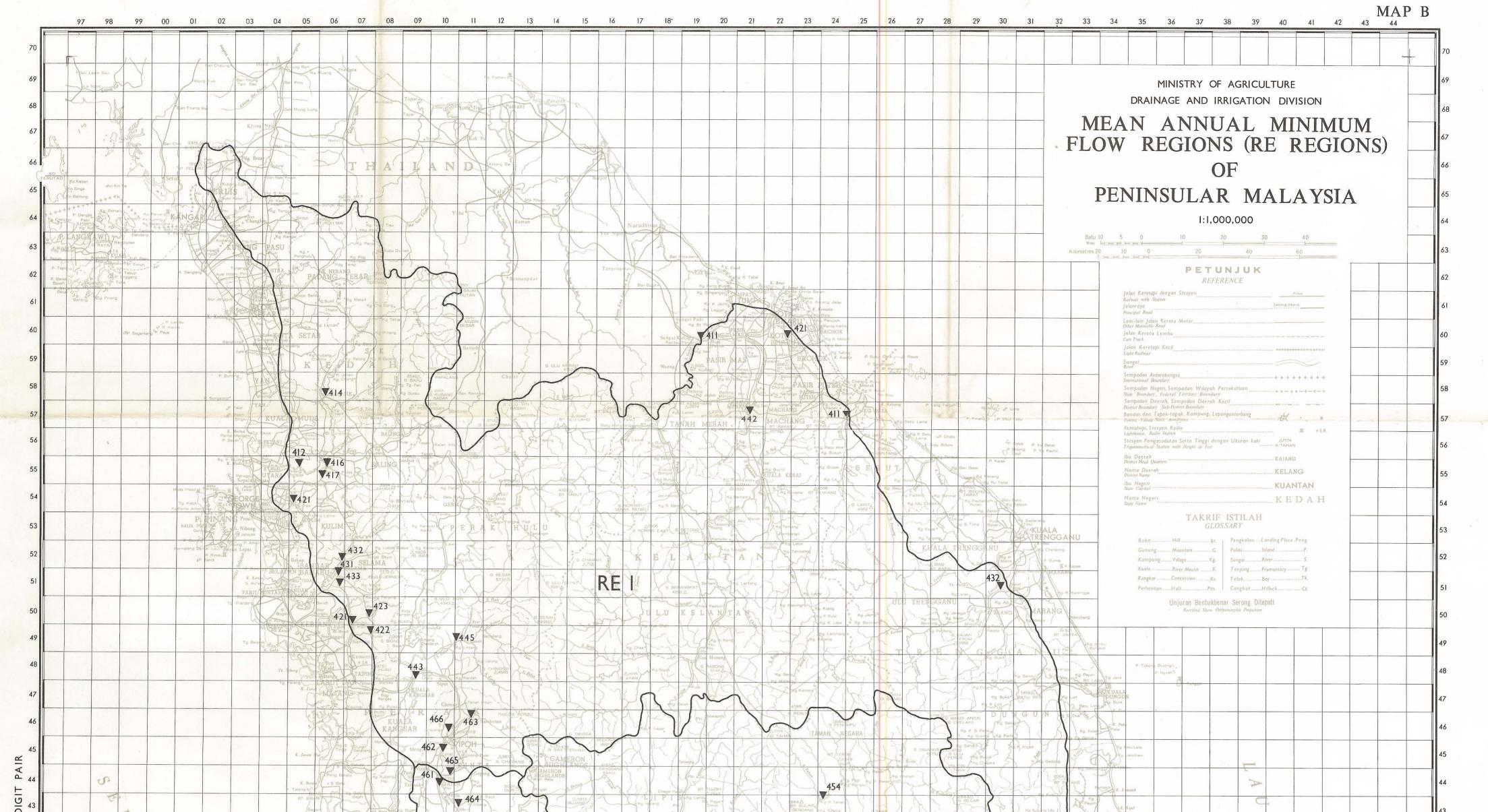
Results of Individual Station Frequency Analysis—(Continued)

STATION	DURATION			Q	_{D,T} (CUMEC	<i>(S)</i>		
No	(D) (DAYS)	T = 1.1	T = 1.5	T = 2.33	T = 5.0	T = 10.0	T = 20.0	T = 50.0
		1.0.107	a 5000	a 7 73 4	2 107(1 7(07		1 2704
5007421	1	4.8496	3.5289	2.7734	2.1076	1.7697	1.5552	1.3796
	4	5.4017	4.0425	3.2156	2.4380	2.0142	1.7278	1.4771
	7	6.0433	4.3487	3.4190	2.6354	2.2561	2.0252	1.8450
	30	9.2416	6.9856	5.5476	4.1272	3.3102	2.7323	2.1994
5007423	1	3.7493	2.4289	1.7887	1.3150	1.1164	1.0096	.93683
	4	4.3034	2.6620	1.9278	1.4283	1.2377	1.1431	1.0839
	7	4.2606	2.7071	2.0261	1.5728	1.4037	1.3212	1.2711
	30	5.6178	3.8688	3.0340	2.4263	2.1762	2.0439	1.9550
5106431	1	15.282	11.346	9.0425	6.9652	5.8822	5.1790	4.5892
	4	15.705	11.893	9.6312	7.5601	6.4626	5.7399	5.1241
	7	16.322	12.507	10.279	8.2742	7.2320	6.5567	5.9915
	30	24.959	16.569	13.181	11.108	10.405	10.090	9.9142
5106422	1	3.4592	1.8382	1.3748	1.1754	1.1300	1.1156	1.1099
5106433		3.9720	1.9541	1.5212	1.3816	1.3589	1.3533	1.3518
	4		2.2688	1.7229	1.5255	1.4890	1.4793	1.4759
	7	4.5414						
	30	8.5898	4.1890	2.8895	2.3119	2.1759	2.1314	2.1136
5130432	1	76.288	49.663	38.830	32.154	29.872	28.842	28.261
·	4	78.794	54.272	42.928	34.940	31.769	30.143	29.089
	7	82.536	58.346	46.134	36.713	32.575	30.258	28.606
	30	105.29	75.386	58.876	44.879	38.061	33.886	30.601
5206432	.1	16.343	13.293	11.025	8.3807	6.5646	5.0640	3.4207
	4	16.940	13.718	11.352	8.6297	6.7864	5.2824	3.6578
	7	18.274	14.244	11.638	9.0212	7.4901	6.3904	5.3595
	30	25.449	18.310	14.550	11.516	10.116	9.2989	8.6881
5405421	1	4.3598	2.7079	2.0275	1.6025	1.4552	1.3878	1.3493
0.00.01	4	4.4674	2.8173	2.1170	1.6663	1.5045	1.4283	1.3836
	7	4.5844	2.9153	2.2008	1.7365	1.5683	1.4884	1.4408
	30	5.0380	3.4292	2.7011	2.2003	2.0065	1.9091	1.8476
5505412	1	42.478	25.833	18.361	13.262	11.308	10.335	9.7244
0000112	4	44.519	27.078	19.124	13.607	11.454	10.365	9.6697
	7	46.163	28.527	20.075	13.899	11.344	9.9873	9.0728
	30	60.193	34.622	23.442	16.019	13.260	11.922	11.107
5506416	1	6.9725	5.2541	4.1754	3.1269	2.5340	2.1210	1.7462
	4	7.2853	5.4550	4.3198	3.2309	2.6241	2.2065	1.8331
	7	7.7892	5.6550	4.4176	3.3127	2.7431	2.3768	2.0725
	30	9.9198	7.1691	5.5989	4.2195	3.5210	3.0788	2.7176
5506417	1	1.9754	1.5045	1.1768	.82125	.59518	.42040	.24278
	4	2.0176	1.5224	1.2079	.89802	.72011	.59490	.47960
	7	2.0482	1.5717	1.2725	.98187	.81756	.70340	.59972
	30	2.3178	1.8671	1.5652	1.2501	1.0584	.91558	.77620
5721442	- 1	230.04	175.74	139.30	101.27	78.059	60.764	43.877
5141774	4	243.57	182.86	144.51	106.97	85.597	70.607	56.919
	. 7	253.49	191.12	151.76	113.28	91.403	76.076	62.097
	30	316.73	234.08	185.14	140.43	116.81	101.29	88.092
	1							
5724411	1	13.240	10.933	9.3745	7.7340	6.7241	5.9663	5.2198
	4	13.861	11.493	9.8365	8.0280	6.8694	5.9691	5.0482
	7	14.407	12.059	10.358	8.4292	7.1422	6.1062	5.0037
	30	17.561	14.491	12.311	9.8901	8.3119	7.0663	5.7700

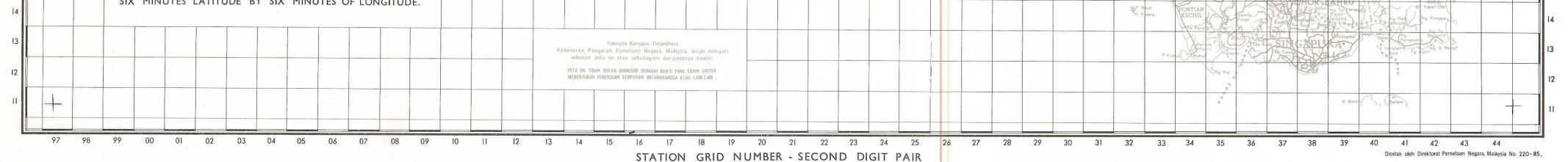
APPENDIX III—(Continued)

STATION	DURATION			Q	_{D.T} (CUMEC	S)		
No.	(D) (DAYS)	T = I.I	T = 1.5	T = 2.33	T = 5.0	T = 10.0	T = 20.0	T = 50.0
5806414	1	16.710	12.769	10.263	7.7935	6.3768	5.3768	4.4569
	4	17.188	13.152	10.557	7.9697	6.4666	5.3938	4.3952
	7	17.653	13.553	10.913	8.2771	6.7428	5.6459	4.6229
	30	21.278	16.397	13.245	10.086	8.2411	6.9181	5.6796
6019411	1	10.908	7.3309	5.1584	3.1207	2.0122	1.2654	.61275
	4	11.533	7.6538	5.3538	3.2504	2.1374	1.4051	.78187
	7	12.073	7.9994	5.5983	3.4161	2.2691	1.5193	.88499
	30	16.664	10.769	7.3201	4.2110	2.5915	1.5402	.65892
6022421	1	.60935	.39518	.26827	.15212	.09065	.05014	.01586
	4	.62663	.41275	.28357	.16261	.09745	.05354	.01530
	7	.65467	.43144	.29660	.17025	.10170	.05581	.01586
6022421	30	.81133	.53881	.37479	.22181	.13909	.08385	.03598


•••


Results of Individual Station Frequency Analysis—(Continued)

HYDROLOGICAL PROCEDURES PUBLISHED


1.	Estimation of the Design Rainstorm in Peninsular Malaysia (Revised and updated, 1982)	\$10.00
2.	Water Quality Sampling for Surface Water (1973)	\$ 3.00
3.	A General Purpose Event Water Level Recorder Capricorder Model 1598 (1973)	\$ 5.00
4.	Magnitude and frequency of floods in Peninsular Malaysia (1974)	\$ 6.00
5.	Rational method of flood estimation for rural catchments in Peninsular Malaysia (1974)	\$ 3.00
6.	Hydrological Station numbering system (1974)	\$ 3.00
7.	Hydrological Station Registers (1974)	\$ 5.00
8.	Field Installation and Maintenance of Capricorder 1599 (1974)	\$ 5.00
9.	Field Installation and Maintenance of Capricorder 1598 Digital Event Water Level Recorder (1974)	\$ 5.00
10.	Stage—Discharge Curves (1977)	\$ 5.00
11.	Design Flood Hydrograph Estimation for Rural Catchments in Peninsular Malaysia (1976)	\$ 5.00
12.	Magnitude and Frequency of Low Flows in Peninsular Malaysia (1976)	\$ 5.00
13.	The Estimation of Storage—Draft Rate Characteristics for Rivers in Peninsular Malaysia (1976)	\$ 5.00
14.	Graphical Recorders Instructions for Chart Changing and Annotation (1976)	\$ 5.00
15.	River Discharge Measurement by Current Meter (1976)	\$ 5.00
16.	Flood Estimation for Urban Areas in Peninsular Malaysia (1976)	\$ 5.00
17.	Estimating Potential Evapotranspiration Using the Penman Procedure (1977)	\$ 5.00
18.	Hydrological Design of Agriculture Drainage Systems (1977)	\$ 5.00
19.	The Determination of Suspended Sediment Discharge (1977)	\$ 5.00
20.	Hydrological Aspects of Agricultural Planning and Irrigation Design (1977)	\$10.00
21.	Evaporation Data Collection Using U.S. Class "A" Aluminium Pan (1981)	\$ 5.00
22.	River Water Quality Sampling (1981)	\$ 5.00
23.	Operation and Maintenance of Cableways Installation (1981)	\$ 5.00
24.	Establishment of Agro-hydrological Stations (1982)	\$ 3.00
25	Standard Stick Gauge for River Station (1982)	\$ 5.00
26.	Estimation of Design Rainstorm in Sabah and Sarawak (1983)	\$10.00

	1
Image: state of the state o	
Image: Section of the section of t	
Image: State of the state o	
Image: Normality of the second sec	
Kg. Ken Ste Kg. Ken Ste Kg. Kg. Terer K, Kg. Pays Kg. Ken Ste Kg. Kg. Lengther Kg. Bargangang Kg. Kg. Bargang Kg. Kg. Bargangang Kg. Kg. Bargangang Kg. Kg. Bargangang Kg. Kg. Bargangang Kg. Kg. Bargang	
S. Inche Hanis S. Inc	
o Description Second Second <td></td>	
Atam and Billotan Billota	
Children and Child	
P Tengah de Abé Pelaluhan P Tengah de Abé Pelaluhan P Selat Remo P Sel	s. Hitari
Normalization Normalization <thnormalization< th=""> Normalization Norma</thnormalization<>	
Kar hong Laut BT LADA Ku Alas Ku Alas <td>Borha Lanting</td>	Borha Lanting
Normal Port	Permanypul
No <	
THE BASE MAP IS REPRODUCED BY PERMISSION OF THE DIRECTOR OF NATIONAL MAPPING MALAYSIA. GOVERNMENT COPYRIGHT RESERVED.	
THIS MAP ACCOMPANIES AND SHOULD BE READ IN CONJUNCTION WITH DLD HYDROLOGICAL PROCEDURE NO. 12: MAGNITUDE & FREQUENCY OF	<i>u</i>
D I D HYDROLOGICAL PROCEDURE NO. 12: MAGNITUDE & FREQUENCY OF LOW FLOWS IN PENINSULAR MALAYSIA (REVISED AND UPDATED 1985). ▼ 421: D I D STREAMFLOW STATION USED IN THIS STUDY.	
RC 3:- LOW FLOW FREQUENCY REGION.	u,

To Hantube	Segar Caller Cal	
PANGKOS / Pantal Pulter (Swith) P Mentagoor - P Mentagoor - P Danjbo Lauri	La Dala La	
P. Tukur Parak .	To Kepen Resemble The To Chevaling	
P Provide Provide Provide Prov	Ka Pere Blands	
	The state of the second of of the seco	
IL IL	To Loren Lume + 100 Bit All All All All All All All All All Al	
LAKA	A Server Hy S Share Hy	
The second secon	S. Huji Durai Simping Luffa	
	Are pair Paring Hard Area Care and Area Car	
0 · · · · · · · · · · · · · · · · · · ·	E Inche Hamid CUALA SELANGOR 421 - S Bunya Willy Yam Bid Bid Bunya Willy Yam Bid Bid Bunya Willy Yam Bid Bid Bunya Willy Yam B	
Selanom n	KUALIA-Fed SELANGCORE	1
	Bi Freizer Bi Fre	
	P Anges 2	
	To Bakey to ALLAN PLALIN PALING TO TOTAL TO THE TOTAL TOT	
	P. Selet King Grand P. Selet King Grand Selection Select	
	K Selar Lumar To. Rol K. Aver Humon K. Selar Lumar K. Selar Humon K. Selar Humon	
	A Langer DATON DATON LANGA Salar Broken State Broken Stat	
	Bill Last Steand to Steand	
	K. Spring Dual Porton DickSon 421P BAUG remark Balu Entre Bulon ALA Balu Entre Bulon ALA Balu Entre Bulon ALA BAUG ALA BAU Entre Bulon ALA BAU ENTRE Bau Ent	-
	P Blorgen Kg Te Kenardo Tg Tanan Meran Tg T	
	Meleka) Ko K Linggi Kachi K S Baharu Pang Baleton All Ko Pang Bale	-
NOTES	Light Terrent and Terret and Terrent and Terrent and Terrent and Terrent and T	
THE BASE MAP IS REPRODUCED BY THE DIRECTOR OF NATIONAL MAPPI GOVERNMENT COPYRIGHT R	PERMISSION OF PING MALAYSIA.	
THIS MAP ACCOMPANIES AND SHOULD BE READ IN D I D HYDROLOGICAL PROCEDURE NO. 12: MAGNITU LOW FLOWS IN PENINSULAR MALAYSIA (REVISED A	UDE & FREQUENCY OF	
▼ 421 :- D I D STREAMFLOW STATION USED IN THIS	10 Tohor Hand Hand	
RE 3 :- MEAN ANNUAL MINIMUM FLOW REGION.	To Separation To Later Hermonic Hermon	
THE NUMBERS IN THE MARGIN SHOW	DWN AS:- 26	
SIX MINUTES LATITUDE BY SIX MINU		

